2024届广东省广州市增城中学高一下数学期末统考模拟试题含解析_第1页
2024届广东省广州市增城中学高一下数学期末统考模拟试题含解析_第2页
2024届广东省广州市增城中学高一下数学期末统考模拟试题含解析_第3页
2024届广东省广州市增城中学高一下数学期末统考模拟试题含解析_第4页
2024届广东省广州市增城中学高一下数学期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州市增城中学高一下数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.2.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.603.甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是()A.甲、乙两人打靶的平均环数相等B.甲的环数的中位数比乙的大C.甲的环数的众数比乙的大D.甲打靶的成绩比乙的更稳定4.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.5.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.6.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为7.设A,B是任意事件,下列哪一个关系式正确的()A.A+B=A B.ABA C.A+AB=A D.A8.的弧度数是()A. B. C. D.9.若是等差数列,首项,,,则使前n项和成立的最大正整数n=()A.2017 B.2018 C.4035 D.403410.是边AB上的中点,记,,则向量()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列{an}的公差为d,且d≠0,其前n项和为Sn,若满足a1,a2,a5成等比数列,且S3=9,则d=_____,Sn=_____.12.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.13.已知向量,,且,则______.14.若实数满足,,则__________.15.空间两点,间的距离为_____.16.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.18.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.19.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.20.为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18B362C54(1)求,;(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.21.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.2、A【解析】

由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【点睛】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.3、C【解析】甲:8,6,8,6,9,8,平均数为7.5,中位数为8,众数为8;乙:4,6,8,7,10,10,平均数为7.5,中位数7.5,众数为10;所以可知错误的是C。故选C。4、D【解析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.5、B【解析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).6、C【解析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.7、C【解析】

试题分析:因为题目中给定了A,B是任意事件,那么利用集合的并集思想来分析,两个事件的和事件不一定等于其中的事件A.可能大于事件A选项B,AB表示的为AB的积事件,那么利用集合的思想,和交集类似,不一定包含A事件.选项C,由于利用集合的交集和并集的思想可知,A+AB=A表示的等式成立.选项D中,利用补集的思想和交集的概念可知,表示的事件A不发生了,同时事件B发生,显然D不成立.考点:本试题考查了事件的关系.点评:对于事件之间的关系的理解,可以运用集合中的交集,并集和补集的思想分别对应到事件中的和事件,积事件,非事件上来分析得到,属于基础题.【详解】请在此输入详解!8、B【解析】

由角度与弧度的关系转化.【详解】-150.故选:B.【点睛】本题考查角度与弧度的互化,解题关键是掌握关系式:.9、D【解析】

由等差数列的性质可得,,由等差数列前项和公式可得则,,得解.【详解】解:由是等差数列,又,所以,又首项,,则,,则,,即使前n项和成立的最大正整数,故选:D.【点睛】本题考查了等差数列的性质,重点考查了等差数列前项和公式,属中档题.10、C【解析】由题意得,∴.选C.二、填空题:本大题共6小题,每小题5分,共30分。11、2n2.【解析】

由已知列关于首项与公差的方程组,求解可得首项与公差,再由等差数列的前项和求解.【详解】由题意,有,即,解得,所以.故答案为:,.【点睛】本题考查等差数列的通项公式与前项和,考查等比数列的性质,属于基础题.12、【解析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.13、【解析】

根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.14、【解析】

由反正弦函数的定义求解.【详解】∵,∴,,∴,∴.故答案为:.【点睛】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.15、【解析】

根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。16、【解析】

根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】

(1)由,,得,进而得即可证明平面.(2)平面得,由,,得,进而证明平面,则平面平面【详解】证明:(1)因为,,所以,所以,因为平面,平面,所以平面.(2)因为平面,平面,所以.因为,,所以,又,所以平面.又平面,所以平面平面.【点睛】本题考查线面平行的判定,面面垂直的判定,考查空间想象及推理能力,熟记判定定理是关键,是基础题18、(1)(2)【解析】

(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【点睛】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.19、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的问题,同时考查古典概型的问题,熟记古典概型的概率公式,以及均值的求法即可,属于常考题型.20、(1),(2)【解析】

(1)根据分层抽样的概念,可得,求解即可;(2)分别记从高校抽取的2人为,,从高校抽取的3人为,,,先列出从5人中选2人作专题发言的基本事件,再列出2人都来自高校的基本事件,进而求出概率【详解】(1)由题意可得,所以,(2)记从高校抽取的2人为,,从高校抽取的3人为,,,则从高校,抽取的5人中选2人作专题发言的基本事件有,,,,,,,,,共10种设选中的2人都来自高校的事件为,则包含的基本事件有,,共3种因此,故选中的2人都来自高校的概率为【点睛】本题考查分层抽样,考查古典概型,属于基础题21、(1)证明见解析;(2).【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论