![2024届福建省安溪第六中学数学高一下期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view3/M03/08/05/wKhkFmZpJVqAQAwfAAJTl5gwMuc654.jpg)
![2024届福建省安溪第六中学数学高一下期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view3/M03/08/05/wKhkFmZpJVqAQAwfAAJTl5gwMuc6542.jpg)
![2024届福建省安溪第六中学数学高一下期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view3/M03/08/05/wKhkFmZpJVqAQAwfAAJTl5gwMuc6543.jpg)
![2024届福建省安溪第六中学数学高一下期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view3/M03/08/05/wKhkFmZpJVqAQAwfAAJTl5gwMuc6544.jpg)
![2024届福建省安溪第六中学数学高一下期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view3/M03/08/05/wKhkFmZpJVqAQAwfAAJTl5gwMuc6545.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省安溪第六中学数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为()A. B.C. D.2.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()3.经过,两点的直线方程为()A. B. C. D.4.已知平行四边形对角线与交于点,设,,则()A. B. C. D.5.△ABC中,三个内角A,B,C所对应的边分别为a,b,c,若c=,b=1,∠B=,则△ABC的形状为()A.等腰直角三角形 B.直角三角形C.等边三角形 D.等腰三角形或直角三角形6.在△ABC中,角A,B,C的对边分别为a,b,c,若,,则在方向上的投影为()A.1 B.2 C.3 D.47.直线的倾斜角为()A. B. C. D.8.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.9.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.10.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.12.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.13.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.14.已知的三边分别是,且面积,则角__________.15.已知向量,,若,则实数___________.16.已知指数函数上的最大值与最小值之和为10,则=____________。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,所对的边分别为,,.(1)求;(2)若,求,,.18.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm),将数据分组如下:分组
频数
频率
[1.95,1.97)
13
[1.97,1.99)
23
[1.99,2.31)
53
[2.31,2.33]
23
合计
133
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33mm,试求这批球的直径误差不超过3.33mm的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.20.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.21.智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从名手机使用者中随机抽取名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是:,.(1)根据频率分布直方图,估计这名手机使用者中使用时间的中位数是多少分钟?(精确到整数)(2)估计手机使用者平均每天使用手机多少分钟?(同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的名手机使用者中在和中按比例分别抽取人和人组成研究小组,然后再从研究小组中选出名组长.求这名组长分别选自和的概率是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,结合二次函数的图象可得二次不等式的解集.【详解】由,得(x−1)(x+3)>0,解得x<−3或x>1.所以原不等式的解为,故选:B.【点睛】本题考查一元二次不等式的解法,求出二次方程的根结合二次函数的图象可得解集,属于基础题.2、C【解析】解:3、C【解析】
根据题目条件,选择两点式来求直线方程.【详解】由两点式直线方程可得:化简得:故选:C【点睛】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.4、B【解析】
根据向量减法的三角形法则和数乘运算直接可得结果.【详解】本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.5、D【解析】试题分析:在中,由正弦定理可得,因为,所以或,所以或,所以的形状一定为等腰三角形或直角三角形,故选D.考点:正弦定理.6、A【解析】
根据正弦定理,将已知条件进行转化化简,结合两角和差的正弦公式可求,根据在方向上的投影为,代入数值,即可求解.【详解】因为,所以,即,即,因为,所以,所以,所以在方向上的投影为:.故选:A.【点睛】本题主要考查正弦定理和平面向量投影的应用,根据正弦定理结合两角和差的正弦公式是解决本题的关键,属于中档题.7、D【解析】
求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.8、C【解析】
由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.9、A【解析】,向左平移个单位得到函数=,故10、A【解析】
求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【点睛】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题12、.【解析】
先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.13、或【解析】
利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.14、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.15、【解析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.16、【解析】
根据和时的单调性可确定最大值和最小值,进而构造方程求得结果.【详解】当时,在上单调递增,,解得:或(舍)当时,在上单调递减,,解得:(舍)或(舍)综上所述:故答案为:【点睛】本题考查利用函数最值求解参数值的问题,关键是能够根据指数函数得单调性确定最值点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由得则有=得即.(2)由推出;而,即得,则有解得18、(Ⅰ)见解析;(Ⅱ)3.9;(Ⅲ)【解析】试题分析:(Ⅰ)根据公式:频率=频数÷样本容量可补充完成频率分布表,然后作出频率分布直方图;(Ⅱ)直径误差不超过3.33mm的频率有3.53,3.53,3.53,所以这批球的直径误差不超过3.33mm的概率3.53+3.53+3.53=3.9;(Ⅲ)由平均值公式可求得试题解析:(Ⅰ)分组
频数
频率
[4.95,4.97)
43
3.43
[4.97,4.99)
53
3.53
[4.99,5.34)
53
3.53
[5.34,5.33]
53
3.53
合计
433
4
(Ⅱ)设误差不超过3.33的事件为,则.(Ⅲ)考点:4.频率分布直方图;5.求数值的平均值19、(1)详见解析(2)详见解析(2)【解析】
试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是线BD与平面EBC所成的角.经过计算即可得出.(3)利用体积公式即可得出.试题解析:(1)如图,连接,易知为的中点.因为,分别是和的中点,所以,因为平面,平面,所以平面.(2)证明:因为四边形为正方形,所以.又因为平面平面,所以平面.所以.又因为,所以.所以平面.从而平面平面.(3)取AB中点N,连接,因为,所以,且.又平面平面,所以平面.因为是四棱锥,所以.即几何体的体积.点睛:本题考查了正方形的性质、线面,面面平行垂直的判定与性质定理、三棱锥的体积计算公式、线面角的求法,考查了推理能力与计算能力,属于中档题.20、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解析】
(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可(3)计算出两位同学的实验数据的平均数和方差,问题得解【详解】(1)设有名男同学,则,∴,∴男、女同学的人数分别为3人,1人(2)把3名男同学和1名女同学记为,则选取两名同学的基本事件有,,,,,,,,,,,共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为(3),,因,所以第二位同学的实验更稳定.【点睛】本题主要考查了分层抽样比例关系及古典概型概率计算公式,还考查了样本数据的平均数及方差计算,考查方差与稳定性的关系,属于中档题21、(1)分钟.(2)58分钟;(3)【解析】
(1)根据中位数将频率二等分可直接求得结果;(2)每组数据中间值与对应小矩形的面积乘积的总和即为平均数;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技发展与学科教育的互促关系研究
- 科技教育编程教育的普及与推广
- DB4453T 30-2025广藿香组培苗生产技术规程
- DB35T 2232-2024海峡两岸共通 火龙果生产技术规程
- 东莞企业劳动合同范本
- 个人贷款房屋抵押合同模板大全
- 业务经营权转让合同
- 个人车位共有权买卖合同
- 临时仓储合同范本
- 两人股权转让合同范本
- 2024-2030年全球及中国水杨酸行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 体育馆改造装修工程施工组织设计
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 2024-2030年中国润滑油行业发展趋势与投资战略研究报告
- 钢结构工程施工(第五版) 课件 2项目四 高强度螺栓
- 机票预订行业营销策略方案
- 大学生就业指导(高等院校学生学习就业指导课程)全套教学课件
- 《实验诊断学》课件
- 眼的解剖结构与生理功能课件
- 小学网管的工作总结
评论
0/150
提交评论