版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省巧家县巧家第一中学数学高一下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.2.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.3.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.4.已知向量,,,若,则()A.1 B.2 C.3 D.45.若、、,且,则下列不等式中一定成立的是()A. B. C. D.6.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定7.设公差为-2的等差数列,如果,那么等于()A.-182 B.-78 C.-148 D.-828.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.9.已知数列满足是数列的前项和,则()A. B. C. D.10.已知a,,若关于x的不等式的解集为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的内角的对边分别为.若,则的面积为__________.12.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.13.已知在中,,则____________.14.关于的不等式,对于恒成立,则实数的取值范围为_______.15.在平面直角坐标系中,点在第二象限,,,则向量的坐标为________.16.已知函数分别由下表给出:123211123321则当时,_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.18.已知定义在上的函数的图象如图所示(1)求函数的解析式;(2)写出函数的单调递增区间(3)设不相等的实数,,且,求的值.19.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.20.已知数列满足,();(1)求、、;(2)猜想数列的通项公式;(3)用数学归纳法证明你的猜想;21.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.2、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,3、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.4、A【解析】
利用坐标表示出,根据垂直关系可知,解方程求得结果.【详解】,,解得:本题正确选项:【点睛】本题考查向量垂直关系的坐标表示,属于基础题.5、D【解析】
对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【点睛】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.6、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.7、D【解析】
根据利用等差数列通项公式及性质求得答案.【详解】∵{an}是公差为﹣2的等差数列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故选D.【点睛】本题主要考查了等差数列的通项公式及性质的应用,考查了运算能力,属基础题.8、D【解析】
利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.9、D【解析】
由已知递推关系式可以推出数列的特征,即数列和均是等比数列,利用等比数列性质求解即可.【详解】解:由已知可得,当时,由得,所以数列和均是公比为2的等比数列,首项分别为2和1,由等比数列知识可求得,,故选:D.【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.10、D【解析】
由不等式的解集为R,得的图象要开口向上,且判别式,即可得到本题答案.【详解】由不等式的解集为R,得函数的图象要满足开口向上,且与x轴至多有一个交点,即判别式.故选:D【点睛】本题主要考查一元二次不等式恒成立问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.12、【解析】
设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.13、【解析】
根据可得,根据商数关系和平方关系可解得结果.【详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【点睛】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.14、或【解析】
利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【点睛】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.15、【解析】
由三角函数的定义求出点的坐标,然后求向量的坐标.【详解】设点,由三角函数的定义有,得,,得,所以,所以故答案为:【点睛】本题考查三角函数的定义的应用和已知点的坐标求向量坐标,属于基础题.16、3【解析】
根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2时,f(n)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.从而当x∈[1,2)时,f'(x)<1,f(x)递减;当x∈(2,+∞)时,f'(x)>1,f(x)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利.18、(1);(2);(3);【解析】
(1)根据函数的最值可得,周期可得,代入最高点的坐标可得,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用在内的解就是和,即可得到结果.【详解】(1)由函数的图象可得,又因为函数的周期,所以,因为函数的图象经过点,即,所以,即,所以.(2)由,可得,可得函数的单调递增区间为:,(3)因为,所以,又因为可得,所以或,解得或,、因为且,,所以.【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.19、(1)0.72;(2)【解析】
(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【点睛】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的求解,其中解答中利用公式准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),,;(2);(3)证明见解析;【解析】
(1)根据数列的递推关系式,代入运算,即可求解、、;(2)由(1)可猜想得;(3)利用数学归纳法,即可证得猜想是正确的.【详解】(1)由题意,数列满足,();所以,,;(2)由(1)可猜想得;(3)①当时,,上式成立;②假设当时,成立,则当时,由①②可得,当时,成立,即数列的通项公式为.【点睛】本题主要考查了数列的递推关系式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编八年级语文上册《一着惊海天》示范公开课教学课件
- 部编版六年级下册语文古诗与日积月累(注释、译文)
- 专利技术交易
- 4S店高级涂料装修服务
- 乡村振兴项目工作汇报
- PHP云人才系统的设计和实现
- 2023-2024学年全国小学三年级下语文人教版期中考卷(含答案解析)
- 二手房的购房合同2024年
- 2024年淮安客运从业资格证模拟考试
- 2024年海口客运上岗证条件
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
- 2024年山东地区光明电力服务公司第二批招聘高频难、易错点500题模拟试题附带答案详解
- 2024山东高速集团限公司招聘367人高频难、易错点500题模拟试题附带答案详解
- DB34T 3730-2020 耕地损毁程度鉴定技术规范
- 北京市历年中考语文现代文之议论文阅读30篇(含答案)(2003-2023)
- 2024年新人教道德与法治一年级上册全册课件(新版教材)
- 请款单模板(范本)
- 2024高校大学《辅导员》招聘考试题库(含答案)
- 管道保温体积面积计算公式
评论
0/150
提交评论