版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020春河南省新乡市中考数学模拟测试卷本卷满分100分考试时间90分钟选择题(12×3′=36′)1、﹣3的倒数的绝对值是()A.3B.﹣3C.D.2、2018年参加我市中考的总人数约为人,用科学记数法应表示为()A、B、C、D、3、下列图形中,是中心对称图形但不是轴对称图形的是()4、下列计算正确的是()B.C.D.5、一组数据2、4、5、6、x的平均数是4,则这组数的标准差是()A、2B、C、10D、6、如图,△ABC中,AB=AC=4,BC=2,AB的垂直平分线交AC于点D,交AB于点E,则△BCD的周长为()A、B、C、D、7、不等式组的解集在数轴上可表示为()8、如上右图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是()A.等于2B.等于C.等于D.无法确定9、湖南电视台举行《我是歌手》大奖赛,每场比赛都有编号110号共10道综合素质试题供选手随机抽取作答。在某场比赛中,前两位选手分别抽走了2号,7号题(抽走的题不放回),则第三位选手抽走8号题的概率是()B.C.D.10、某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售()A.80元 B.100元 C.120元 D.160元已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个如图,在等腰Rt∆ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,AB边上运动,且保持AD=CE,连接DE,DF,EF,在此变化运动过程中,下列结论正确的是()①∆DEF是等腰直角三角形②四边形CDEF不可能为正方形③DE长度的最小值为4④四边形CDEF的面积保持不变⑤∆CDE的最大面积为8A、①②③B、①④⑤C、①③④D、③④⑤填空题(4×3′=12′)13、分解因式:。14、如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是.AADACBAEACABAFADACDBAEAFCAGBAABAEAFCAGBAA图a图b图c15、如上右图,已知点A在双曲线y=上,且OA=,过A作AC⊥x轴于C,OA的垂直平分线交OC于B.则△ABC的周长为16、用棋子按下列方式摆图形,依照此规律,第n个图形有__________枚棋子。解答题(共52′)17、(6′).(6′)先化简再求值:其中x满足19、(7分)“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.下图为我区某校2019年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:某校201某校2015年科技比赛参赛人数条形统计图电子百拼电子百拼建模机器人航模25%25%某校2015年航模比赛参赛人数扇形统计图参赛人数(单位:人)参赛人数(单位:人)参赛类别02电子百拼68清84航模机器人建模6664(1)该校参加机器人、建模比赛的人数分别是人和人;(2分)(2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整;(3分)(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?20、(7分)如图,为⊙O的直径,,交于,,.(1)求证:.(3分)(2)求AB长.(4分)(8分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!22、(9分)如图,在⊙O中,OA、OB是半径,且OA⊥OB,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH为平行四边形;(3分)(2)①当点C在AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;若不存在,请说明理由;(3分)②求CD2+CH2之值。(3分)OOBECHGDA(9分)已知如图,抛物线与轴交于A,B两点,与轴交于点C,∠ACB=90°,求的值及抛物线的顶点坐标过A、B、C三点的⊙M交轴于另一点D,连接DM并延长交⊙M于E,过E点的⊙M的切线分别交轴,轴于F,G,求直线GF的解析式(3)在条件(2)下,设P为上的一动点,(不与C,D重合),连接PA交轴于H,问是否存在一个常数K,始终满足,如果存在,请写出求解过程?若不存在,请说明理由。参考答案选择题1、C2、B3、D4、C5、B6、C7、D8、B9、C10、C11、A12、B二、填空题13、14、120°15、5解答题-8(1)4,6;(2)24,120°;(3)994(1)证明过程略;(2)AB=21、设涨价x元,利润为y元,则
方案一:涨价x元时,该商品每一件利润为:50+x-40,销售量为:500-10x,
∴y=(50+x-40)(500-10x)=-10x2+400x+5000=-10(x-20)2+9000
∵当x=20时,y最大=9000,
∴方案一的最大利润为9000元;
方案二:该商品售价利润为=(50-40)×500p,广告费用为:1000m元,
∴y=(50-40)×500p-1000m=-2000m2+9000m=-2000(m-2.25)2+10125
∴方案二的最大利润为10125元;
∴选择方案二能获得更大的利润.22、(1)证明:如右图,∵CD⊥OA,CE⊥OB,
∴∠ODC=∠OEC=90°
又∵∠AOB=90°,∴四边形OECD是矩形。
∴OD=EC,且OD//EC,∴∠ODG=∠CEH
∵DG=EH,∴△ODG≌△CEH,
∴OG=CH。
同理可证OH=CG
∴四边形OGCH为平行四边形
(2)①解:线段DG的长度不变。∵点C是AB上的点,OA=6。∴OC=OA=6∵四边形OECD是矩形,∴ED=OC=6∵DG=GH=HE,∴DG=ED=2②解:如右图,过点H作HF⊥CD于点F,
∵EC⊥CD,∴HF//EC
∴△DHF∽△DEC,
∴,∴
从而CF=CD-FD=CD
在Rt△CHF中,CH2=HF2+CF2=HF2+CD2
在Rt△HFD中,HF2=DH2-DF2=CD2
∴CH2=CD2+CD2=16-CD2
∴23、解答: 解:(1)由抛物线可知,点C的坐标为(0,m),且m<0.设A(,0),B(,0).则有=3m又OC是Rt△ABC的斜边上的高,∴△AOC∽△COB∴∴x1•x2=﹣m2即﹣=3m,解得m=0或m=﹣3而m<0,故只能取m=﹣3(3分)这时y=﹣4故抛物线的顶点坐标为(,﹣4).(2)由已知可得:M(,0),A(﹣,0),B(3,0),C(0,﹣3),D(0,3)∵抛物线的对称轴是x=,也是⊙M的对称轴,连接CE∵DE是⊙M的直径,∴∠DCE=90°,∴直线x=,垂直平分CE,∴E点的坐标为(2,﹣3)∵,∠AOC=∠DOM=90°,∴∠ACO=∠MDO=30°,∴AC∥DE∵AC⊥CB,∴CB⊥DE又∵FG⊥DE,∴FG∥CB由B(3,0)、C(0,﹣3)两点的坐标易求直线CB的解析式为:y=﹣3可设直线FG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《留置针使用规范》课件
- 《小数数位顺序表》课件
- 八下期中测试卷01【测试范围:第1-11课】(原卷版)
- 旅游行业导游讲解培训总结
- 2006年江苏高考语文真题及答案
- 年度目标设定与实现路径计划
- 幼儿园工作总结用心呵护温馨成长
- 《焊工基础知识》课件
- 2023年-2024年新员工入职前安全教育培训试题附参考答案(夺分金卷)
- 厨师个人述职报告15篇
- 人教版小学四年级数学上册期末复习解答题应用题大全50题及答案
- 冀教版五年级上册脱式计算题100道及答案
- 你是排长我是兵(2022年山东济南中考语文试卷记叙文阅读题及答案)
- 《ISO56001-2024创新管理体系 - 要求》之22:“8运行-8.2 创新行动”解读和应用指导材料(雷泽佳编制-2024)
- 广东省中山市2023-2024学年高三物理上学期第五次统测试题含解析
- 《体育科学研究方法》题库
- 高级会计实务案例分析-第三章 企业全面预算管理
- DL∕T 5142-2012 火力发电厂除灰设计技术规程
- 城域网建设方案
- 政府会计 第二版 课件 第七章 净资产与预算结余
- 2024年恩施州直事业单位选聘36人历年(高频重点提升专题训练)共500题附带答案详解
评论
0/150
提交评论