版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省北票市第三高级中学2023-2024学年高一数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列{an},若a2=10,a5=1,则{an}的前7项和为A.112 B.51 C.28 D.182.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.3.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.4.已知直线,若,则的值为()A.8 B.2 C. D.-25.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.6.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.7.,,是空间三条不同的直线,则下列命题正确的是A., B.,C.,,共面 D.,,共点,,共面8.过点P(﹣2,m)和Q(m,4)的直线斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或49.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.10.把十进制数化为二进制数为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列前n项和为,若,则______.12.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.13.某企业利用随机数表对生产的800个零件进行抽样测试,先将800个零件进行编号,编号分别为001,002,003,…,800从中抽取20个样本,如下提供随机数表的第行到第行:若从表中第6行第6列开始向右依次读取个数据,则得到的第个样本编号是_______.14.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.15.函数的最小值为____________.16.函数的最小正周期为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.18.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.19.甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?20.已知数列中,,,数列满足。(1)求证:数列为等差数列。(2)求数列的通项公式。21.已知等差数列的前n项和为,关于x的不等式的解集为.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据等差数列的通项公式和已知条件列出关于数列的首项和公差的方程组,解出数列的首项和公差,再根据等差数列的前项和可得解.【详解】由等差数列的通项公式结合题意有:,解得:,则数列的前7项和为:,故选:C.【点睛】本题考查等差数列的通项公式和前项公式,属于基础题.2、D【解析】
本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.3、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4、D【解析】
根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.5、C【解析】
先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.6、A【解析】
由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.7、B【解析】
解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条.选项A,可能相交.选项C中,可能不共面,比如三棱柱的三条侧棱,选项D,三线共点,可能是棱锥的三条棱,因此错误.选B.8、C【解析】试题分析:利用直线的斜率公式求解.解:∵过点P(﹣2,m)和Q(m,4)的直线斜率等于1,∴k==1,解得m=1.故选C.考点:直线的斜率.9、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。10、C【解析】选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.12、1【解析】
直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.13、1【解析】
根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,1合适则满足条件的6个编号为436,535,577,348,522,1,则第6个编号为1,故答案为1.【点睛】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.14、5【解析】设一部门抽取的员工人数为x,则.15、【解析】
将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。16、【解析】
先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18、(1)(2)30°或90°.【解析】
(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中垂线为,中垂线为,∴圆心满足∴,半径,∴圆的标准方程为.(2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,此时直线的倾斜角为90°,②当斜率存在时,设直线的方程为,由弦长为4,可得圆心到直线的距离为,,∴,此时直线的倾斜角为30°,综上所述,直线的倾斜角为30°或90°.【点睛】本题考查圆的方程以及直线截圆所得弦长的计算,在求直线与圆所得弦长的计算中,问题的核心要转化为弦心距的计算,弦心距的计算主要有以下两种方式:一是利用勾股定理计算,二是利用点到直线的距离公式计算圆心到直线的距离.19、甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小【解析】
设从甲到A调运吨,从甲到B调运吨,则由题设可得,总的费用为,利用线性规划可求目标函数的最小值.【详解】设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,设调运的总费用为元,则.由已知得约束条件为,可行域如图所示,平移直线可得最优解为.甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.【点睛】本题考查线性规划在实际问题中的应用,属于基础题.20、(1)见解析;(2)【解析】
(1)将题目过给已知代入进行化简,结合的表达式,可证得为等差数列;(2)利用(1)的结论求得的通项公式,代入求得的通项公式.【详解】(1)证明:由题意知,,又,故,又易知,故数列是首项为,公差为1的等差数列。(2)由(1)知,所以由,可得,故数列的通项公式为。【点睛】本小题第一问考查利用数列的递推公式证明数列为等差数列,然后利用这个等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年浙江省宁波市慈溪市高三第三次教学质量监测数学试题试卷
- 城市扩建土地征用协议范例2024
- 2024年公司销售协议条款样本
- 2024年食品企业厂长聘任协议范本
- 2024年度专项法律支持公司协议
- 2024公司行政人员专属劳动协议草案
- 文书模板-应届生三方协议签订流程
- 2024年子女赡养义务履行协议
- 2024年家用电器保修协议样本
- 办公室装修升级协议模板 2024
- 2023年类风湿关节炎心脏损害的中医治疗
- 逻导习题答案-逻辑学导论
- 国学导论·巴蜀文化课件
- (完整word版)商业计划书模板
- 自动化学科概论-学生版-东南大学-自动化学院课件
- 《人民警察内务条令》试题及答案
- 园林植物花卉育种学课件第4章-选择育种
- DB31T 1249-2020 医疗废物卫生管理规范
- 多发伤复合伤病人急诊抢救流程图
- 硫酸镁使用课件
- 18周年庆典晚宴主持稿
评论
0/150
提交评论