版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市煤矿第四中学2024年高一下数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数局部图象如图所示,则函数的解析式为A. B.C. D.2.设是△所在平面上的一点,若,则的最小值为A. B. C. D.3.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.4.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.85.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.6.如果在一次实验中,测得x,y的四组数值分别是A1,3,B2,3.8,C3,5.2,D4,6,则A.y=x+1.9 B.C.y=0.95x+1.04 D.7.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.8.若a,b是方程的两个根,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值为()A.-4 B.-3 C.-2 D.-19.已知四面体中,,分别是,的中点,若,,与所成角的度数为30°,则与所成角的度数为()A.90° B.45° C.60° D.30°10.关于x的不等式的解集是,则关于x的不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为虚数单位,复数的模为______.12.已知向量a=(2,-4),b=(-3,-4),则向量a与13.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.14.在中,若,点,分别是,的中点,则的取值范围为___________.15.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.16.已知等差数列满足,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.18.某地区2012年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2012201320142015201620172018年份代号1234567人均纯收入2.93.33.64.44.85.25.9(1)已知y与x线性相关,求y关于x的线性回归方程;(2)利用(1)中的线性回归方程,预测该地区2020年农村居民家庭人均纯收入.(附:线性回归方程中,,,其中为样本平均数)19.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.20.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值,并分别写出相应的的值.21.已知.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由的部分图象可求得A,T,从而可得,再由,结合的范围可求得,从而可得答案.【详解】,;又由图象可得:,可得:,,,.,,又,当时,可得:,此时,可得:故选D.【点睛】本题考查由的部分图象确定函数解析式,常用五点法求得的值,属于中档题.2、C【解析】分析:利用向量的加法运算,设的中点为D,可得,利用数量积的运算性质可将原式化简为,为AD中点,从而得解.详解:由,可得.设的中点为D,即.点P是△ABC所在平面上的任意一点,为AD中点.∴.当且仅当,即点与点重合时,有最小值.故选C.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.3、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.4、A【解析】
首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.5、A【解析】
根据题意可知的值,从而可求的值.【详解】因为,,则.故选A.【点睛】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.6、B【解析】
求出样本数据的中心(2.5,4.5),依次代入选项中的回归方程.【详解】∵x∴样本数据的中心为(2.5,4.5),将它依次代四个选项,只有B符合,∴y与x之间的回归直线方程是y=1.04x+1.9【点睛】本题的考点是回归直线经过样本点的中心,而不是考查利用最小二乘法求回归直线方程.7、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8、D【解析】
由韦达定理确定,,利用已知条件讨论成等差数列和等比数列的位置,从而确定的值.【详解】由韦达定理得:,,所以,由题意这三个数可适当排序后成等比数列,且,则2一定在中间所以,即因为这三个数可适当排序后成等差数列,且,则2一定不在的中间假设,则即故选D【点睛】本题考查了等差数列和等比数列的基本性质,解决本题的关键是要掌握三个数成等差数列和等比数列的性质,如成等比数列,且,,则2必为等比中项,有.9、A【解析】
取的中点,利用三角形中位线定理,可以得到,与所成角为,运用三角形中位线定理和正弦定理,可以求出的大小,也就能求出与所成角的度数.【详解】取的中点连接,如下图所示:因为,分别是,的中点,所以有,因为与所成角的度数为30°,所以,与所成角的大小等于的度数.在中,,故本题选A.【点睛】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键.10、D【解析】
由不等式与方程的关系可得且,则等价于,再结合二次不等式的解法求解即可.【详解】解:由关于x的不等式的解集是,由不等式与方程的关系可得且,则等价于等价于,解得,即关于x的不等式的解集是,故选:D.【点睛】本题考查了不等式与方程的关系,重点考查了二次不等式的解法,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.12、5【解析】
先求出a⋅b,再求【详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【点睛】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y13、.【解析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.14、【解析】
记,,,根据正弦定理得到,再由题意,得到,,推出,再由题意,确定的范围,即可得出结果.【详解】记,,,由得,所以,即,因此,因为,分别是,的中点,所以,同理:,所以,因为且,所以,则,所以,则,所以.即的取值范围为.故答案为【点睛】本题主要考查解三角形,熟记正弦定理,以及两角和的正弦公式即可,属于常考题型.15、【解析】
从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【点睛】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求16、9【解析】
利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.18、(1);(2)6.8千元.【解析】
(1)由表中数据计算、,求出回归系数,得出关于的线性回归方程;(2)利用线性回归方程计算2020年对应时的值,即可得出结论.【详解】(1)由表中数据,计算,,,,,,关于的线性回归方程为:;(2)利用线性回归方程,计算时,(千元),预测该地区2020年农村居民家庭人均纯收入为6.8千元.【点睛】本题考查线性回归方程的求法与应用问题,考查函数与方程思想、转化与化归思想,考查数据处理.19、(1);(2)或.【解析】
(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:(1)已知圆的半径是2,圆心为.圆的方程:;(2)设.的最大值等于7,等于1..解得或,即或.【点睛】本题考查了圆的方程,点与圆的位置关系,属于中档题.20、(1)(2)见解析【解析】试题分析:(1)利用和角公式及降次公式对f(x)进行化简,得到f(x)=,代入周期公式即可;(2)由x的范围求出ωx+φ的范围,结合正弦函数单调性得出最值和相应的x.试题解析:(1),,,,,所以的最小正周期为.(2)∵,∴,当,即时,;当,即时,.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年行政服务协议范本下载:详尽条款版版B版
- 2024年股权担保合同
- 2024年高档会所食堂牛羊肉定制采购配送合同3篇
- 2024年跨境电子商务平台建设标前协议书
- 2024年规范化幼儿园租赁协议样本版B版
- 2024年质押借款合同正式样本
- 2024年电影业演员劳务协议示例版B版
- 2024年食品生产加工合作协议
- 2024建筑施工合同标的及工程进度安排
- 2024环保技术研发与污染治理服务合同
- 服务方案进度计划质量保障措施
- 心肺复苏术课件2024新版
- 2023-2024公需科目(数字经济与驱动发展)考试题库及答案
- 重症患者的容量管理课件
- ap系列火焰光度计说明书
- GMW系列往复式给料机说明书
- 集装箱码头堆场项目可行性研究报告写作范文
- 食堂成本核算方案
- 医保药店一体化信息管理系统操作手册
- 一般塑胶产品成品生产工艺流程图
- 2016年河南省对口升学文秘类基础课试题卷
评论
0/150
提交评论