版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省仲元中学、中山一中等七校高一数学第二学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球2.中,,则()A. B. C.或 D.03.若直线过点,则此直线的倾斜角是()A. B. C. D.90。4.已知圆锥的侧面展开图是一个半径为6,圆心角为的扇形,则圆锥的高为()A. B. C. D.55.设且,则下列不等式成立的是()A. B. C. D.6.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④7.在三棱锥中,平面,,,,,则三棱锥外接球的体积为()A. B. C. D.8.已知三个互不相等的负数,,满足,设,,则()A. B. C. D.9.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或310.若角的终边与单位圆交于点,则()A. B. C. D.不存在二、填空题:本大题共6小题,每小题5分,共30分。11.方程组的增广矩阵是________.12.在△ABC中,已知30,则B等于__________.13.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.14.已知数列为等比数列,,,则数列的公比为__________.15.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.16.函数的定义域为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中(底面为正三角形),平面,,,,是边的中点.(1)证明:平面平面.(2)求点到平面的距离.18.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.19.(1)已知圆经过和两点,若圆心在直线上,求圆的方程;(2)求过点、和的圆的方程.20.已知集合,或.(1)若,求;(2)若,求的取值范围.21.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.2、D【解析】
根据正弦定理把角化为边,可得,然后根据余弦定理,可得,最后使用余弦定理,可得结果.【详解】由,所以,即由,又所以,则故,又故选:D【点睛】本题考查正弦定理、余弦定理的应用,属基础题.3、A【解析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【点睛】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.4、C【解析】
利用扇形的弧长为底面圆的周长求出后可求高.【详解】因为侧面展开图是一个半径为6,圆心角为的扇形,所以圆锥的母线长为6,设其底面半径为,则,所以,所以圆锥的高为,选C【点睛】圆锥的侧面展开图是扇形,如果圆锥的母线长为,底面圆的半径长为,则该扇形的圆心角的弧度数为.5、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.6、C【解析】
根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.7、B【解析】
在三棱锥中,求得,又由底面,所以,在直角中,求得,进而得到三棱锥外接球的直径,得到,利用体积公式,即可求解.【详解】由题意知,在三棱锥中,,,,所以,又由底面,所以,在直角中,,所以,根据球的性质,可得三棱锥外接球的直径为,即,所以球的体积为,故选B.【点睛】本题主要考查了与球有关的组合体中球的体积的计算,其中解答中根据组合体的结构特征和球的性质,准确求解球的半径是解答的关键,着重考查了推理与运算能力,属于中档试题.8、C【解析】
作差后利用已知条件变形为,可知为负数,由此可得答案.【详解】由题知.因为,,都是负数且互不相等,所以,即.故选:C【点睛】本题考查了作差比较大小,属于基础题.9、B【解析】
两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.10、B【解析】
由三角函数的定义可得:,得解.【详解】解:在单位圆中,,故选B.【点睛】本题考查了三角函数的定义,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【点睛】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.12、【解析】
根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、【解析】∵,(,),当时,,,…,,并项相加,得:,
∴,又∵当时,也满足上式,
∴数列的通项公式为,∴
,令(),则,∵当时,恒成立,∴在上是增函数,
故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.14、【解析】
设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.15、②③⑤【解析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.16、【解析】函数的定义域为故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)由,为的中点,可得,又平面,可得,即可证明平面,结合平面,即可证明平面平面;(2)设点到平面的距离为,由等体积法,,即,求解即可.【详解】(1)证明:,为的中点,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.设点到平面的距离为,由,得,即,,即点到平面的距离为.【点睛】本题考查了面面垂直的证明,考查了利用等体积法求点到面的距离,考查了学生的空间想象能力,属于中档题.18、(1);(2)【解析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.19、(1);(2)【解析】
(1)由直线AB的斜率,中点坐标,写出线段AB中垂线的直线方程,与直线x-2y-3=0联立即可求出交点的坐标即为圆心的坐标,再根据两点间的距离公式求出圆心到点A的距离即为圆的半径,根据圆心坐标与半径写出圆的标准方程即可;(2)设圆的方程为,代入题中三点坐标,列方程组求解即可【详解】(1)由点和点可得,线段的中垂线方程为.∵圆经过和两点,圆心在直线上,∴,解得,即所求圆的圆心,∴半径,所求圆的方程为;(2)设圆的方程为,∵圆过点、和,∴列方程组得解得,∴圆的方程为.【点睛】本题考查了圆的方程求解,考查了待定系数法及运算能力,属于中档题.20、(1)A∩B={x|﹣1<x≤﹣1}(2)(1,1].【解析】
(1)首先确定A、B,然后根据交集定义求出即可;(2)由A∪B=R,得,得1<a≤1.【详解】B={x|x≤﹣1或x>5},(1)若a=1,则A={x|﹣1<x<5},∴A∩B={x|﹣1<x≤﹣1};(2)∵A∪B=R,∴,∴1<a≤1,∴实数a的取值范围为(1,1].【点睛】本题考查了交集及其运算,考查了并集运算的应用,是基础题.21、(1)(2)30°或90°.【解析】
(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东淄博市临淄区招聘教师205人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁市兖州区中医医院面向部分高校毕业生引进40人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东枣庄滕州市招聘农村党建助理员34人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东昌乐县事业单位招聘历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东乐陵市事业单位公开招聘工作人员历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东临沂城建建设集团限公司公开招聘职业经理人2人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东东营市事业单位上半年统考(7.26)历年管理单位笔试遴选500模拟题附带答案详解
- 2025年宣城市旌德县中小学(幼儿园)教师招聘历年管理单位笔试遴选500模拟题附带答案详解
- 2025年宜春市公安局交通警察支队招考临聘人员管理单位笔试遴选500模拟题附带答案详解
- 2025年定西市通渭县事业单位及招考管理单位笔试遴选500模拟题附带答案详解
- 2024-2025学年人教版八年级上册数学期末押题卷(含答案)
- 高标准农田建设的风险管理与应急预案
- 2024年01月11129土木工程力学(本)期末试题答案
- 《简·爱》-2022年中考一轮复习之必读名著对比阅读训练
- 新浙美版三年级上册美术教案
- 中国国际商会入会申请表
- 裂隙灯显微镜的原理
- 汽车维修项目明细表1
- 小学六年级数学上期家长会精品课件
- (完整版)从句的引导词总表
- 美国EVUS登记信息采集表
评论
0/150
提交评论