




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省榆树一中2024年高一数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个非零向量,满足,则()A. B.C. D.2.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A.若,,则B.若,,则C.若,,则D.若,,则3.函数的最大值为()A.1 B.2 C.3 D.54.已知等比数列{an}的前n项和为Sn,若2Sn=an+1﹣1(n∈N*),则首项a1为()A.1 B.2 C.3 D.45.已知变量,满足约束条件则取最大值为()A. B. C.1 D.26.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.10117.函数的简图是()A. B. C. D.8.一个三角形的三边长成等比数列,公比为,则函数的值域为()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)9.若向量,且,则等于()A. B. C. D.10.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的前项和为,若,且,则_____.12.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.13.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).14.在数列中,,则______________.15.己知数列满足就:,,若,写出所有可能的取值为______.16.已知sin=,则cos=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,设数列的前n项和为,证明.18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.19.已知为等边角形,.点满足,,.设.试用向量和表示;若,求的值.20.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.21.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【详解】由题,得,即,,则,所以.故选:C.【点睛】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.2、C【解析】
依次判断每个选项的正误得到答案.【详解】若,,则或A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.3、D【解析】
由可求得所处的范围,进而得到函数最大值.【详解】的最大值为故选:【点睛】本题考查函数最值的求解,关键是明确余弦型函数的值域,属于基础题.4、A【解析】
等比数列的公比设为,分别令,结合等比数列的定义和通项公式,解方程可得所求首项.【详解】等比数列的公比设为,由,令,可得,,两式相减可得,即,又所以.故选:A.【点睛】本题考查数列的递推式的运用,等比数列的定义和通项公式,考查方程思想和运算能力,属于基础题.5、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.6、A【解析】
利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【详解】由于数列是等差数列,故,解得,故.故选:A.【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.7、D【解析】
变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.8、D【解析】
由题意先设出三边为则由三边关系:两短边和大于第三边,分公比大于与公式在小于两类解出公比的取值范围,此两者的并集是函数的定义域,再由二次函数的性质求出它的值域,选出正确选项.【详解】解:设三边:则由三边关系:两短边和大于第三边,即
(1)当时,,即,解得;
(2)当时,为最大边,,即,解得,
综合(1)(2)得:,
又的对称轴是,故函数在上是减函数,在上是增函数,
由于时,与时,,
所以函数的值域为,故选:D.【点睛】本题考查等比数列的性质及二次函数的值域的求法,解答本题关键是熟练掌握等比数列的性质,能利用它建立不等式解出公比的取值范围得出函数的定义域,熟练掌握二次函数的性质也很重要,由此类题可以看出,扎实的双基,娴熟的基础知识与公式的记忆是解题的知识保障.9、B【解析】
根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.10、D【解析】
利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.二、填空题:本大题共6小题,每小题5分,共30分。11、4或1024【解析】
当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.12、【解析】
由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.13、否【解析】
根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.14、20【解析】
首先根据已知得到:是等差数列,公差,再计算即可.【详解】因为,所以数列是等差数列,公差..故答案为:【点睛】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.15、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=516、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】【试题分析】(1)借助题设中的数列递推式探求数列通项之间的关系,再运用等比数列的定义求得通项公式;(2)依据(1)的结论运用错位相减法求解,再借助简单缩放法推证:(1)当时,得,当时,得,所以,(2)由(1)得:,又①得②两式相减得:,故,所以.点睛:解答本题的思路是充分借助题设条件,先探求数列的的通项公式,再运用错位相减法求解前项和.解答第一问时,先借助题设中的数列递推式探求数列通项之间的关系,再运用等比数列的定义求得通项公式;解答第二问时,先依据(1)中的结论求得,运用错位相减求和法求得,使得问题获解.18、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19、(1);;(2).【解析】
(1)根据向量线性运算法则可直接求得结果;(2)根据(1)的结论将已知等式化为;根据等边三角形边长和夹角可将等式变为关于的方程,解方程求得结果.【详解】(1)(2)为等边三角形且,即:,解得:【点睛】本题考查平面向量线性运算、数量积运算的相关知识;关键是能够将等式转化为已知模长和夹角的向量的数量积运算的形式,根据向量数量积的定义求得结果.20、(1)(x+3)2+(y-2)2【解析】
(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑工程渗漏维修合同示范文本
- 2025企业与个人之间的借款合同范本大全
- 加压泵房、消防水池、深井泵房分包合同
- 股权投资转让协议
- 2025混凝土浇筑施工合同(大清包)
- 自愿赠与所有财产合同
- 建筑工程三方付款协议书范本
- 设立公司房屋租赁合同范本
- 2025大连煤炭产品代理合同范本
- 2025乡村联合住宅开发合同
- 2025-2030MicroLED显示器行业市场现状供需分析及投资评估规划分析研究报告
- 长沙2025年湖南长沙县招聘机关事业单位工作人员26人笔试历年参考题库附带答案详解
- 国家开放大学2025年《管理学基础》形考作业1-4答案
- 曼昆微观经济学经济学十大原理英文版.ppt
- -三自由度机械手设计
- 循环系统总论
- 第二章空气动力学
- 会计师事务所11内部分配和考核晋升制度
- 浅谈如何搞好班组安全管理工作
- 第七章_材料显微断口分析
- 创伤护四项技术
评论
0/150
提交评论