版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山遵化市2025届高一下数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则下列不等式中正确的是()A. B.C. D.2.如图,是圆的直径,,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.3.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.34.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.465.点到直线的距离是()A. B. C.3 D.6.已知正数、满足,则的最小值为()A. B. C. D.7.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对8.如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,垂足为E,点F是PB上一点,则下列判断中不正确的是()﹒A.平面PAC B. C. D.平面平面PBC9.若则一定有()A. B. C. D.10.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则______.12.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______13.已知与之间的一组数据,则与的线性回归方程必过点__________.14.在各项均为正数的等比数列中,,,则___________.15.已知,,且,则的最小值为________.16.若,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.18.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.19.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若=12,其中O为坐标原点,求|MN|.20.设集合,,求.21.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
取,则,,只有B符合.故选B.考点:基本不等式.2、B【解析】
先根据条件计算出阴影部分的面积,然后计算出整个圆的面积,利用几何概型中的面积模型即可计算出对应的概率.【详解】设圆的半径为,因为,所以,又因为,所以落到阴影部分的概率为.故选:B.【点睛】本题考查几何概型中的面积模型的简单应用,难度较易.注意几何概型的常见概率公式:.3、C【解析】
利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.4、A【解析】
模拟程序运行即可.【详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【点睛】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.5、D【解析】
根据点到直线的距离求解即可.【详解】点到直线的距离是.故选:D【点睛】本题主要考查了点到线的距离公式,属于基础题.6、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.7、C【解析】
先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【点睛】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.8、C【解析】
根据线面垂直的性质及判定,可判断ABC选项,由面面垂直的判定可判断D.【详解】对于A,PA垂直于以AB为直径的圆所在平面,而底面圆面,则,又由圆的性质可知,且,则平面PAC.所以A正确;对于B,由A可知,由题意可知,且,所以平面,而平面,所以,所以B正确;对于C,由B可知平面,因而与平面不垂直,所以不成立,所以C错误.对于D,由A、B可知,平面PAC,平面,由面面垂直的性质可得平面平面PBC.所以D正确;综上可知,C为错误选项.故选:C.【点睛】本题考查了线面垂直的性质及判定,面面垂直的判定定理,属于基础题.9、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选10、B【解析】
设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【点睛】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.12、-1【解析】
分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.13、【解析】
根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.14、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.15、【解析】
由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.16、【解析】
利用诱导公式求解即可【详解】,故答案为:【点睛】本题考查诱导公式,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.18、(3)甲班参加;(4).【解析】
试题分析:(3)由题意知求出x=5,y=4.从而求出乙班学生的平均数为83,分别求出S34和S44,根据甲、乙两班的平均数相等,甲班的方差小,得到应该选派甲班的学生参加决赛.(4)成绩在85分及以上的学生一共有5名,其中甲班有4名,乙班有3名,由此能求出随机抽取4名,至少有3名来自甲班的概率.试题解析:(3)甲班的平均分为,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(4)分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.考点:3.古典概型及其概率计算公式;4.茎叶图.19、(3);(3)3.【解析】试题分析:(3)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(3)由题意可得,经过点M、N、A的直线方程为y=kx+3,根据直线和圆相交的弦长公式进行求解试题解析:(3)由题意可得,直线l的斜率存在,设过点A(2,3)的直线方程:y=kx+3,即:kx-y+3=2.由已知可得圆C的圆心C的坐标(3,3),半径R=3.故由,解得:.故当,过点A(2,3)的直线与圆C:相交于M,N两点.(3)设M;N,由题意可得,经过点M、N、A的直线方程为y=kx+3,代入圆C的方程,可得,∴,∴,由,解得k=3,故直线l的方程为y=x+3,即x-y+3=2.圆心C在直线l上,MN长即为圆的直径.所以|MN|=3考点:直线与圆的位置关系;平面向量数量积的运算20、【解析】
首先求出集合,,再根据集合的运算求出即可.【详解】因为的解为(舍去),所以,又因为的解为,所以,所以.【点睛】本题考查了集合的运算,对数与指数的运算,属于基础题.21、(1);(2)【解析】
(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出的值,由结合两角差的余弦公式求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书法大型活动课件
- 社会保险基金与基金管理
- 《儿童脑性瘫痪》课件
- 《光敏电阻、光电池》课件
- 湖南省2024年化学中考试题【附答案】
- 《公司的股利政策》课件
- 《公司利润分配》课件2
- 冠脉造影术前护理
- 数学学案:课堂导学用数学归纳法证明不等式
- 大学生涯及生涯规划
- 2023年上海机场集团有限公司校园招聘笔试题库及答案解析
- 勘察质量及安全保障措施
- 高保真音频功率放大器
- 架桥机安全教育培训试卷
- 临时工用工协议书简单版(7篇)
- 国家电网公司施工项目部标准化管理手册(2021年版)线路工程分册
- 马克·夏加尔课件
- 沧州市基层诊所基本公共卫生服务医疗机构卫生院社区卫生服务中心村卫生室地址信息
- 小学生汉语拼音田字格练习纸蓝打印版
- 生态脆弱区的综合治理(第1课时)课件 高中地理人教版(2019)选择性必修2
- 8S培训教材(-90张)课件
评论
0/150
提交评论