湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题含解析_第1页
湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题含解析_第2页
湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题含解析_第3页
湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题含解析_第4页
湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县两市镇第二中学2025届数学高一下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不论为何值,直线恒过定点A. B. C. D.2.函数图像的一个对称中心是()A. B. C. D.3.设等差数列的前项和为,若,,则的值为()A. B. C. D.4.已知点满足条件则的最小值为()A.9 B.-6 C.-9 D.65.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-26.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A., B.,C., D.,7.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形8.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.189.若关于x,y的方程组无解,则()A. B. C.2 D.10.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和12二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为__________.12.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________13.从原点向直线作垂线,垂足为点,则的方程为_______.14.若直线始终平分圆的周长,则的最小值为________15.已知三棱锥,平面,,,,则三棱锥的侧面积__________.16.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.18.已知角终边上有一点,求下列各式的值.(1);(2)19.设等差数列的前项和为,且.(I)求数列的通项公式;(II)设为数列的前项和,求.20.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.21.设递增数列共有项,定义集合,将集合中的数按从小到大排列得到数列;(1)若数列共有4项,分别为,,,,写出数列的各项的值;(2)设是公比为2的等比数列,且,若数列的所有项的和为4088,求和的值;(3)若,求证:为等差数列的充要条件是数列恰有7项;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据直线方程分离参数,再由直线过定点的条件可得方程组,解方程组进而可得m的值.【详解】恒过定点,恒过定点,由解得即直线恒过定点.【点睛】本题考查含有参数的直线过定点问题,过定点是解题关键.2、B【解析】

由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.3、D【解析】

利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.4、B【解析】试题分析:满足约束条件的点的可行域,如图所示由图可知,目标函数在点处取得最小值,故选B.考点:线性规划问题.5、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.6、B【解析】

以作为基底的向量需要是不共线的向量,可以从向量的坐标发现,,选项中的两个向量均共线,得到正确结果是.【详解】解:可以作为基底的向量需要是不共线的向量,中一个向量是零向量,两个向量共线,不合要求中两个向量是,,则故与不共线,故正确;中两个向量是,两个向量共线,项中的两个向量是,两个向量共线,故选:.【点睛】本题考查平面中两向量的关系,属于基础题.7、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.8、B【解析】

推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.9、A【解析】

由题可知直线与平行,再根据平行公式求解即可.【详解】由题,直线与平行,故.故选:A【点睛】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.10、C【解析】

利用等差数列性质得到a11=0,再判断S10【详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【点睛】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

本题首先可通过三角恒等变换将函数化简为,然后根据的取值范围即可得出函数的值域.【详解】因为,所以.【点睛】本题考查通过三角恒等变换以及三角函数性质求值域,考查二倍角公式以及两角和的正弦公式,考查化归与转化思想,是中档题.12、②③【解析】

利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.13、.【解析】

先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【点睛】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.14、9【解析】

平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.15、【解析】

根据题意将三棱锥放入对应长方体中,计算各个面的面积相加得到答案.【详解】三棱锥,平面,,,画出图像:易知:每个面都是直角三角形.【点睛】本题考查了三棱锥的侧面积,将三棱锥放入对应的长方体是解题的关键.16、或【解析】

当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】

(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.(3)几何体的体积等于为中点,连接平面【点睛】本题考查了线面平行,线面垂直,等体积法,意在考查学生的空间想象能力和计算能力.18、(1);(2)【解析】

(1)根据三角函数的定义,可知;(2)原式上下同时除以,变为表示的式子,即可求得结果.【详解】(1)(2),原式上下同时除以.【点睛】本题考查了三角函数的定义,属于基础题型.19、(I);(II).【解析】

(I)根据已知的两个条件求出公差d,即得数列的通项公式;(II)先求出,再利用裂项相消法求和得解.【详解】(I)由题得,所以等差数列的通项为;(II)因为,所以.【点睛】本题主要考查等差数列的通项的求法,考查等差数列前n项和基本量的计算,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1);(2).【解析】

(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.21、(1),,,,;(2),;(3)证明见解析;【解析】

(1)根据题意从小到大计算中的值即可.(2)易得数列的所有项的和等于中的每个项重复加了次,再根据等比数列求和即可.(3)分别证明当时,若为等差数列则数列恰有7项以及当数列恰有7项证明为等差数列即可.【详解】(1)易得当,,,时,,,,,.(2)若是公比为2的等比数列,且,则数列的所有项的和等于中每一项重复加了次,故.即,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论