版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省中山市一中丰山学部高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面2.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.3.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.4.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面5.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.136.若,则()A.- B. C. D.7.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.18.已知函数的最小正周期为,若,则的最小值为()A. B. C. D.9.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.310.已知,则的值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某程序框图如图所示,则该程序运行后输出的S的值为________.12.设等差数列的前项和为,则______.13.若是等比数列,,,且公比为整数,则______.14.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________15.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________16.已知向量,且,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与平行.(1)求实数的值:(2)设直线过点,它被直线,所截的线段的中点在直线上,求的方程.18.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.19.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.20.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.21.函数.(1)求函数的周期和递增区间;(2)若,求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.2、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.3、C【解析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.4、D【解析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【点睛】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.5、C【解析】
由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。6、B【解析】
首先观察两个角之间的关系:,因此两边同时取余弦值即可.【详解】因为所以所以,选B.【点睛】本题主要考查了三角函的诱导公式.解决此题的关键在于拼凑出,再利用诱导公式(奇变偶不变、符号看象限)即可.7、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、A【解析】
由正弦型函数的最小正周期可求得,得到函数解析式,从而确定函数的最大值和最小值;根据可知和必须为最大值点和最小值点才能够满足等式;利用整体对应的方式可构造方程组求得,;从而可知时取最小值.【详解】由最小正周期为可得:,和分别为的最大值点和最小值点设为最大值点,为最小值点,当时,本题正确选项:【点睛】本题考查正弦型函数性质的综合应用,涉及到正弦型函数最小正周期和函数值域的求解;关键是能够根据函数的最值确定和为最值点,从而利用整体对应的方式求得结果.9、C【解析】
利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.10、B【解析】
利用诱导公式求得tanα,再利用同角三角函数的基本关系求得要求式子的值.【详解】∵已知tanα,∴tanα,则,故选B.【点睛】本题主要考查应用诱导公式、同角三角函数的基本关系的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据程序框图,依次计算运行结果,发现输出的S值周期变化,利用终止运行的条件判断即可求解【详解】由程序框图得:S=1,k=1;第一次运行S=1第二次运行S=第三次运行S=1当k=2020,程序运行了2019次,2019=4×504+3,故S的值为1故答案为1【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题12、【解析】
设等差数列的公差为,由,可求出的值,结合,可以求出的值,利用等差数列的通项公式,可得,再利用,可以求出的值.【详解】设等差数列的公差为,因为,所以,又因为,所以,而.【点睛】本题考查了等差数列的通项公式以及等差数列的前项和公式,考查了数学运算能力.13、512【解析】
由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,
,,
,,
和是方程的两个实数根,
解方程,
得,,
公比q为整数,
,,
,解得,
.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14、2【解析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.16、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)利用两直线平行的条件进行计算,需注意重合的情况。(2)求出到平行线与距离相等的直线方程为,将其与直线联立,得到直线被直线,所截的线段的中点坐标,进而求出直线的斜率,可得直线的方程。【详解】(1)∵直线与平行,∴且,即且,解得.(2)∵,直线:,:故可设到平行线与距离相等的直线方程为,则,解得:,所以到平行线与距离相等的直线方程为,即直线被直线,所截的线段的中点在上,联立,解得,∴过点∴,的方程为:,化简得:.【点睛】本题主要考查直线与直线的位置关系以及直线斜率、直线的一般方程的求解等知识,解题的关键是熟练掌握两直线平行的条件,直线的斜率公式,平行线间的距离公式,属于中档题。18、(1)(2)【解析】
(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【点睛】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.19、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.20、(1)见解析;(2).【解析】
(1)由题设,化简得,即可证得数列为等比数列.(2)由(1),根据等比数列的通项公式,求得,利用等比数列的前n项和公式,即可求得数列的前n项和.【详解】(1)由题意,数列满足,所以又因为,所以,即,所以是以2为首项,2为公比的等比数列.(2)由(1),根据等比数列的通项公式,可得,即,所以,即.【点睛】本题主要考查了等比数列的定义,以及等比数列的通项公式及前n项和公式的应用,其中解答中熟记等比数列的定义,以及等比数列的通项公式和前n项和的公式,准确计算是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上虞市2024年一级造价工程师《土建计量》深度预测试卷含解析
- 山东省泰安市肥城市2024年一级造价工程师《土建计量》预测试题含解析
- 安徽省亳州市涡阳县高炉镇普九学校2024-2025学年九年级上学期期末道德与法治试卷(含答案)
- 《货物入库管讲》课件
- 理科教师物理教学模板
- 《光传感光调制》课件
- 党员双育计划实施方案
- 传染病诊疗规范标准
- 和平区园林假山施工方案
- 《海尔空调上门维修》课件
- 考研计算机学科专业基础(408)研究生考试试卷与参考答案(2025年)
- 2024秋期国家开放大学专科《政治学原理》一平台在线形考(形考任务一至四)试题及答案
- 食堂智能点餐系统方案
- 化工和危险化学品企业评估分级指南(大中型企业版)
- 2024版抗菌药物DDD值速查表
- 学生干部培训2024年学生干部培训方案
- 大学实训室虚拟仿真平台网络VR实训室方案(建筑学科)
- 静脉治疗护理技术操作标准
- 教育心理学-形考作业4(第十至十一章)-国开-参考资料
- 银行零星装饰维修投标方案(技术方案)
- 2025届高三地理二轮复习课件土壤中的循环与收支平衡
评论
0/150
提交评论