上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题含解析_第1页
上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题含解析_第2页
上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题含解析_第3页
上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题含解析_第4页
上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区外国语学校2024届高一数学第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角2.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.3.若,且,则的值为A. B. C. D.4.已知向量a=(1,-1),bA.-1 B.0 C.1 D.25.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-56.下列函数中,在区间上是减函数的是()A. B. C. D.7.已知函数的部分图象如图所示,则此函数的解析式为()A. B.C. D.8.已知等比数列中,若,且成等差数列,则()A.2 B.2或32 C.2或-32 D.-19.圆与圆的位置关系是()A.外离 B.相交 C.内切 D.外切10.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若a、b、c正数依次成等差数列,则的最小值为_______.12.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.13.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.14.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.15.不等式的解集是_________________16.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求经过直线的交点,且满足下列条件的直线方程:(1)与直线平行;(2)与直线垂直.18.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.19.如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.(1)求观测站到港口的距离;(2)求海轮的航行速度.20.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.21.(1分)设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=1.(1)求数列{an}的通项公式;(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【点睛】本题主要考查了根据所在象限求所在象限的方法,属于中档题.2、C【解析】

试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C3、A【解析】

利用诱导公式求得sinα的值,再利用同角三角函数的基本关系求得cosα,再利用二倍角公式,求得sin2α的值.【详解】解:,且,,则,故选A.【点睛】本题主要考查利用诱导公式、同角三角函数的基本关系,二倍角公式进行化简三角函数式,属于基础题.4、C【解析】

由向量的坐标运算表示2a【详解】解:因为a=(1,-1),b=(-1,2故选C.【点睛】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5、D【解析】

根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.6、C【解析】

根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.

在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.7、B【解析】

由图象可知,所以,又因为,所以所求函数的解析式为.8、B【解析】

根据等差数列与等比数列的通项公式及性质,列出方程可得q的值,可得的值.【详解】解:设等比数列的公比为q(),成等差数列,,,,解得:,,,故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.9、D【解析】

根据圆的方程求得两圆的圆心和半径,根据圆心距和两圆半径的关系可确定位置关系.【详解】由圆的方程可知圆圆心为,半径;圆圆心为,半径圆心距为:两圆的位置关系为:外切本题正确选项:【点睛】本题考查圆与圆的位置关系的判定,关键是能够通过圆的方程确定两圆的圆心和半径,从而根据圆心距和半径的关系确定位置关系.10、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.12、【解析】

根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.13、20【解析】

总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。14、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.15、【解析】

可先求出一元二次方程的两根,即可得到不等式的解集.【详解】由于的两根分别为:,,因此不等式的解集是.【点睛】本题主要考查一元二次不等式的求解,难度不大.16、【解析】

根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先求出,再设所求的直线为,代入求出后可得所求的直线方程.(2)设所求的直线为,代入求出后可得所求的直线方程.【详解】(1)由题意知:联立方程组,解得交点,因为所求直线与直线平行,故设所求直线的方程为,代入,解得,即所求直线方程为(2)设与垂直的直线方程为因为过点,代入得,故所求直线方程为【点睛】本题考查直线方程的求法,注意根据平行或垂直关系合理假设直线方程,本题属于容易题.18、(1)(2)【解析】

(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【点睛】本题考查了面积的计算,意在考查学生灵活利用正余弦定理和面积公式解决问题的能力.19、(1)海里;(2)速度为海里/小时【解析】

(1)由已知可知,所以在中,运用余弦定理易得OA的长.(2)因为C航行1小时到达C,所以知道OC的长即可,即求BC的长.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【详解】(1)因为海伦的速度为20海里/小时,所以1小时后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度为海里/小时【点睛】三角形中一般已知三个条件可求其他条件,用到的工具一般是余弦定理或者正弦定理.20、(1)证明见解析,(2)【解析】

(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立问题的求解;本题解题关键是能够进行合理分类,分别在两种情况下求解参数的范围,最终取交集得到结果.21、(1)an=2×【解析】试题分析:(1)设出等比数列{an}的公比q,利用条件a1=4,a3﹣a4(4)数列{an+bn}是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论