吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题含解析_第1页
吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题含解析_第2页
吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题含解析_第3页
吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题含解析_第4页
吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省松原市油田第十一中学2023-2024学年数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.无论取何实数,直线恒过一定点,则该定点坐标为()A. B. C. D.2.在中,角的对边分别为,且,,,则的周长为()A. B. C. D.3.样本中共有个个体,其值分别为、、、、.若该样本的平均值为,则样本的方差为()A. B. C. D.4.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.5.已知,,若对任意的,恒成立,则角的取值范围是A.B.C.D.6.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.7.已知数列满足:,,则该数列中满足的项共有()项A. B. C. D.8.已知数列满足若,则数列的第2018项为()A. B. C. D.9.若正实数,满足,且恒成立,则实数的取值范围为()A. B. C. D.10.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若与的夹角为钝角,则实数的取值范围为______.12.将函数的图象向左平移个单位长度,得到函数的图象,则__________.13.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______14.______.15.设是公差不为0的等差数列,且成等比数列,则的前10项和________.16.点与点关于直线对称,则直线的方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.18.已知0<α<π,cos(1)求tanα+(2)求sin2α+119.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.20.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.21.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.2、C【解析】

根据,得到,利用余弦定理,得到关于的方程,从而得到的值,得到的周长.【详解】在中,由正弦定理因为,所以因为,,所以由余弦定理得即,解得,所以所以的周长为.故选C.【点睛】本题考查正弦定理的角化边,余弦定理解三角形,属于简单题.3、D【解析】

根据样本的平均数计算出的值,再利用方差公式计算出样本的方差.【详解】由题意可知,,解得,因此,该样本的方差为,故选:D.【点睛】本题考查方差与平均数的计算,灵活利用平均数与方差公式进行求解是解本题的关键,考查运算求解能力,属于基础题.4、C【解析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C5、B【解析】

由向量的数量积得,对任任意的,恒成立,转化成关于的一次函数,保证在和的函数值同时小于0即可.【详解】,因为对任意的恒成立,则,,解得:,故选B.【点睛】本题考查向量数量积的坐标运算、三角恒等变换及不等式恒成立问题,求解的关键是变换主元的思想,即把不等式看成是关于变量的一次函数,问题则变得简单.6、D【解析】

通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【详解】由题意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本题选D.【点睛】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.7、C【解析】

利用累加法求出数列的通项公式,然后解不等式,得出符合条件的正整数的个数,即可得出结论.【详解】,,,解不等式,即,即,,则或.故选:C.【点睛】本题考查了数列不等式的求解,同时也涉及了利用累加法求数列通项,解题的关键就是求出数列的通项,考查运算求解能力,属于中等题.8、A【解析】

利用数列递推式求出前几项,可得数列是以4为周期的周期数列,即可得出答案.【详解】,,,数列是以4为周期的周期数列,则.故选A.【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.9、B【解析】

根据,结合基本不等式可求得,从而得到关于的不等式,解不等式求得结果.【详解】由题意知:,,(当且仅当,即时取等号),解得:本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.10、A【解析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【详解】由于与的夹角为钝角,则且与不共线,,,,解得且,因此,实数的取值范围是,故答案为:.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.12、【解析】

先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.13、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.14、【解析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【详解】令,则,两式作差得:所以故答案为:【点睛】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.15、【解析】

利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【点睛】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.16、【解析】

根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)12;(2)1【解析】

(1)利用同角三角函数平方和商数关系求得tanα;利用两角和差正切公式求得结果;(2)利用二倍角公式化简所求式子,分子分母同时除以cos2α【详解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【点睛】本题考查利用同角三角函数、两角和差正切公式、二倍角的正余弦公式化简求值问题,关键是能够利用求解关于正余弦的齐次式的方式,将问题转化为与tanα19、(1)(2)【解析】

(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【详解】(1);(2),所以.【点睛】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.20、(1)最小正周期为.对称中心坐标为;(2)-1【解析】

(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论