![2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M08/2C/2E/wKhkGWZmlVuAOJsjAAHSZAP5RGE427.jpg)
![2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M08/2C/2E/wKhkGWZmlVuAOJsjAAHSZAP5RGE4272.jpg)
![2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M08/2C/2E/wKhkGWZmlVuAOJsjAAHSZAP5RGE4273.jpg)
![2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M08/2C/2E/wKhkGWZmlVuAOJsjAAHSZAP5RGE4274.jpg)
![2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M08/2C/2E/wKhkGWZmlVuAOJsjAAHSZAP5RGE4275.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省嘉兴三中高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是边AB上的中点,记,,则向量()A. B.C. D.2.已知点到直线的距离为1,则的值为()A. B. C. D.3.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.34.设满足约束条件,则的最大值为()A.3 B.9 C.12 D.155.过点斜率为-3的直线的一般式方程为()A. B.C. D.6.已知,,,若点是所在平面内一点,且,则的最大值等于().A. B. C. D.7.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为()A.48 B.64 C.120 D.808.已知数列满足,则()A.2 B. C. D.9.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度10.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集为____________.12.设等比数列的公比,前项和为,则.13.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.14.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)15.从原点向直线作垂线,垂足为点,则的方程为_______.16.正项等比数列中,存在两项使得,且,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.18.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(1)求数列,的通项公式;(2)当时,记,求数列的前项和.19.设数列满足(,),且,.(1)求和的值;(2)求数列的前项和.20.在中,已知点,边上的中线所在直线的方程为,边上的高所在直线的方程为.(1)求直线的方程;(2)求点的坐标.21.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,∴.选C.2、D【解析】
根据点到直线的距离公式列式求解参数即可.【详解】由题,,因为,故.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.3、C【解析】
由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.4、C【解析】所以,过时,的最小值为12。故选C。5、A【解析】
由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.6、A【解析】以为坐标原点,建立平面直角坐标系,如图所示,则,,,即,所以,,因此,因为,所以的最大值等于,当,即时取等号.考点:1、平面向量数量积;2、基本不等式.7、D【解析】
先还原几何体,再根据锥体侧面积公式求结果.【详解】几何体为一个正四棱锥,底面为边长为8的正方体,侧面为等腰三角形,底边上的高为5,因此四棱锥的侧面积为,选D.【点睛】解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.8、B【解析】
利用数列的递推关系式,逐步求解数列的即可.【详解】解:数列满足,,所以,.故选:B.【点睛】本题主要考查数列的递推关系式的应用,属于基础题.9、B【解析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.10、B【解析】
先化简sinAcosB=sinC=,即得三角形形状.【详解】由sinAcosB=sinC得所以sinBcosA=0,因为A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案为A【点睛】本题主要考查三角恒等变换和三角函数的图像性质,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.12、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.13、②【解析】
对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【点睛】本题考查三角函数的基本性质,属于基础题14、①③【解析】
由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.15、.【解析】
先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【点睛】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.16、【解析】
先由已知求出公比,然后由求出满足的关系,最后求出的所有可能值得最小值.【详解】设数列公比为,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分别为2,,2,,,最小值为.故答案为:.【点睛】本题考查等比数列的性质,考查求最小值问题.解题关键是由等比数列性质求出满足的关系.接着求最小值,容易想到用基本不等式求解,但本题实质上由于,因此对应的只有5个,可以直接代入求值,然后比较大小即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)因为数列的前项和满足:,所以当时,,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.18、(1)见解析(2)【解析】
(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【详解】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;当时,an(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3•5•7•9•(2n﹣1)•,∴Tn=1•3•5•7•(2n﹣3)•(2n﹣1)•,∴Tn=2(2n﹣1)•3,∴Tn=6.【点睛】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19、(1),;(2)【解析】
(1)由已知求得,可得,取即可求得;(2)由,得,可得数列是以为首项,以1为公差的等差数列,由此求得数列的通项公式,再由错位相减法求数列的前项和.【详解】解:(1),且,,,即.,取,得,即;(2)由,得,数列是以为首项,以为公差的等差数列,则.则.,,则,.【点睛】本题考查数列求和,训练了利用错位相减法求数列的前项和,属于中档题.20、(1)(2)【解析】
(1)先计算,过点,得到答案.(2)联立直线方程:解得答案.【详解】解:(1)由边上的高所在直线方程为得,则.又∵,∴直线的方程为,即(或).(2)因为边上的中线过点,则联立直线方程:.解得:,即点坐标为.【点睛】本题考查了直线方程,意在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度办公楼内部装修工程承包合同范本
- 2025年度公租房租赁信用评价体系合同范本
- 2025年度农业现代化项目合作开发合同
- 2025年度滑雪场教练技能竞赛组织合同
- 2025年度生物科技产品研发与购销合同
- 2025年度绿色建筑项目合同能源管理与节能减排服务
- 2025-2030年手工彩色面条工坊行业深度调研及发展战略咨询报告
- 2025年度绿色建筑土方工程合同
- 2025年度行业论坛组织与赞助合同
- 2025年度互动式数字展览设计合同
- 北京市水务安全生产风险评估指南
- 吸引器教学讲解课件
- 医学心理学人卫八版66张课件
- 物业服务五级三类收费重点标准
- 工商注册登记信息表
- 仿古建筑施工常见质量通病及防治措施
- 普通冲床设备日常点检标准作业指导书
- DB51∕T 2630-2019 珙桐扦插育苗技术规程
- 科技文献检索与利用PPT通用课件
- 《红楼梦讲稿》PPT课件
- DB33∕T 628.1-2021 交通建设工程工程量清单计价规范 第1部分:公路工程
评论
0/150
提交评论