2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题含解析_第1页
2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题含解析_第2页
2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题含解析_第3页
2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题含解析_第4页
2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省芜湖一中数学高一下期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的坐标是()A. B. C. D.2.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.93.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.4.已知数列满足,,且,则A.4 B.5 C.6 D.85.在等差数列中,已知,则数列的前9项之和等于()A.9 B.18 C.36 D.526.设P是所在平面内的一点,,则()A. B. C. D.7.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.8.若直线与直线互相平行,则的值为()A.4 B. C.5 D.9.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc210.设的内角,,所对的边分别为,,,且,,面积的最大值为()A.6 B.8 C.7 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.若正实数满足,则的最大值为__________.12.设向量与向量共线,则实数等于__________.13.已知向量,则________14.已知数列满足,,,记数列的前项和为,则________.15.已知数列:,,,,,,,,,,,,,,,,,则__________.16.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-5三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等比数列的前n项和为.已知,,求和.18.已知函数,其中.(1)若函数在区间内有一个零点,求的取值范围;(2)若函数在区间上的最大值与最小值之差为2,且,求的取值范围.19.如图,边长为2的正方形中.(1)点是的中点,点是的中点,将、分别沿,折起,使,两点重合于点,求证:;(2)当时,将、分别沿,折起,使,两点重合于点,求三棱锥的体积.20.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.21.在中,角的对边分别为,且.(1)求角A的大小;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

,.故选C.2、C【解析】

由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.3、C【解析】

过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.4、B【解析】

利用,,依次求,观察归纳出通项公式,从而求出的值.【详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【点睛】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.5、B【解析】

利用等差数列的下标性质,可得出,再由等差数列的前项和公式求出的值.【详解】在等差数列中,故选:B【点睛】本题考查了等差数列的下标性质、以及等差数列的前项和公式,考查了数学运算能力.6、B【解析】移项得.故选B7、C【解析】

分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.8、C【解析】

根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.9、C【解析】

利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.10、D【解析】

由已知利用基本不等式求得的最大值,根据三角形的面积公式,即可求解,得到答案.【详解】由题意,利用基本不等式可得,即,解得,当且仅当时等号成立,又因为,所以,当且仅当时等号成立,故三角形的面积的最大值为,故选D.【点睛】本题主要考查了基本不等式的应用,以及三角形的面积公式的应用,着重考查了转化思想,以及推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.12、3【解析】

利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.13、2【解析】

由向量的模长公式,计算得到答案.【详解】因为向量,所以,所以答案为.【点睛】本题考查向量的模长公式,属于简单题.14、7500【解析】

讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.15、【解析】

根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【详解】当时,;当时,的分母为:又的分子为:本题正确结果:【点睛】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.16、④【解析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或.【解析】

试题解析:(1)解得或即或(2)当时,当时,考点:本题考查求通项及求和点评:解决本题的关键是利用基本量法解题18、(1);(2).【解析】

(1)解方程的根,则根在区间内,即可求出的范围即可;(2)根据函数的单调性求出最大,最小,作差得,从而得到关于的不等式,解出即可.【详解】(1)由,得,由得:,所以的范围是.(2)在递增,,,,,由,得,,解得:.【点睛】本题考查对数函数的性质、函数的单调性、最值等问题,考查转化与化归思想,求解过程中要会灵活运用换元法进行问题解决.19、(1)证明见解析;(2)【解析】

(1)折叠过程中,,保持不变,即,,由此可得线面垂直,从而有线线垂直;(2)由(1)知面,即是三棱锥的高,求出底面积可得体积.【详解】(1)证明:由,.可得:,,,面又面(2)解:在三棱锥中,,,面,由,,可得.【点睛】本题考查证明线线垂直,考查求棱锥的体积.立体几何中证明线线垂直,通常由线面垂直的性质定理给出,即先证线面垂直,而证线面垂直又必须证明线线垂直,注意线线垂直与线面垂直的转化.三棱锥中任何一个面都可以当作底面,因此一般寻找高易得的面为底面,常用换底法求体积.20、(1);(2)【解析】

(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论