版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古翁牛特旗乌丹二中2024届高一数学第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.2.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.53.已知三棱锥,若平面,,,,则三棱锥外接球的表面积为()A. B. C. D.4.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.5.直线与平行,则的值为()A. B.或 C.0 D.-2或06.设全集,集合,则()A. B. C. D.7.若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于()A.1 B.5 C.9 D.48.下列各角中与角终边相同的是()A. B. C. D.9.圆心为且过原点的圆的一般方程是A. B.C. D.10.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.和2的等差中项的值是______.12.直线与圆交于两点,若为等边三角形,则______.13.记,则函数的最小值为__________.14.如图,在中,已知点在边上,,,则的长为____________.15.设数列的通项公式,则数列的前20项和为____________.16.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.18.已知函数.(1)若,求函数的值;(2)求函数的值域.19.已知集合,数列的首项,且当时,点,数列满足.(1)试判断数列是否是等差数列,并说明理由;(2)若,求的值.20.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.21.的内角的对边为,(1)求;(2)若求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.2、D【解析】
由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.3、B【解析】
根据题意画出三棱锥的图形,将其放入一个长方体中,容易知道三棱锥的外接球半径,利用球的表面积公式求解即可.【详解】根据题意画出三棱锥如图所示,把三棱锥放入一个长方体中,三棱锥的外接球即这个长方体的外接球,长方体的外接球半径等于体对角线的一半,所以三棱锥的外接球半径,三棱锥的外接球的表面积.故选:B【点睛】本题主要考查三棱锥的外接球问题,对于三棱锥三条棱有两两垂直的情况,可以考虑将其放入一个长方体中求解外接球半径,属于基础题.4、A【解析】
利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.5、A【解析】
若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【详解】若直线与平行,
则,
解得或,
又时,直线与表示同一条直线,
故,
故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.6、B【解析】
先求出,由此能求出.【详解】∵全集,集合,∴,∴.故选B.【点睛】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.7、C【解析】试题分析:由韦达定理得,,则,当适当排序后成等比数列时,必为等比中项,故,.当适当排序后成等差数列时,必不是等差中项,当是等差中项时,,解得,;当是等差中项时,,解得,,综上所述,,所以.考点:等差中项和等比中项.8、D【解析】
写出与终边相同的角,取值得答案.【详解】解:与终边相同的角为,,取,得,与终边相同.故选:D.【点睛】本题考查终边相同角的表示法,属于基础题.9、D【解析】
根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。10、B【解析】
由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【点睛】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题12、或【解析】
根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.13、4【解析】
利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.14、【解析】
由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。15、【解析】
对去绝对值,得,再求得的前项和,代入=20即可求解【详解】由题的前n项和为的前20项和,代入可得.故答案为:260【点睛】本题考查等差数列的前项和,去绝对值是关键,考查计算能力,是基础题16、117【解析】
由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】
(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【点睛】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1);(2).【解析】
(1),.(2)由(1),,∴函数的值域为[1,2].19、(1)是;(2).【解析】
(1)依据题意,写出递推式,由等差数列得定义即可判断;(2)求出,利用极限知识,求出,即可求得的值。【详解】(1)当时,点,所以,即由得,当时,,将代入,,故数列是以为公差的等差数列。(2)因为,所以,,由得,,,故,。【点睛】本题主要考查等差数列的定义和通项公式的运用,以及数列极限的运算。20、(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)只需证明,又由面面垂直的性质定理知平面;(Ⅱ)连接、,假设存在点,使得它到平面的距离为,设,由,求得的值即可.试题解析:(Ⅰ)证明:在中,为中点,所以.又侧面底面,平面平面,平面,所以平面.(Ⅱ)连接、假设存在点,使得它到平面的距离为.设,则因为,为的中点,所以,且所以因为,且所以在中,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版高校专利技术转让合同
- 2024-2030年中国大枣饮料行业销售模式及投资盈利预测报告
- 2024-2030年中国城市电视台行业发展策略及投资运作模式分析报告
- 2024年农业产业投资合同担保协议3篇
- 2024年校园水电设施改造与维护服务合同3篇
- 马鞍山师范高等专科学校《物联网应用概论》2023-2024学年第一学期期末试卷
- 2024年创新创业项目投资评估与咨询服务协议3篇
- 2024年度自动驾驶汽车劳动合同与聘用合同3篇
- 2024年标准化信息技术外包服务合同一
- 2024年度行政合同科技创新合同纠纷救济与保障协议2篇
- 考研计算机学科专业基础(408)研究生考试试卷与参考答案(2025年)
- 2024秋期国家开放大学专科《政治学原理》一平台在线形考(形考任务一至四)试题及答案
- 安全6S年终总结
- 食堂智能点餐系统方案
- 化工和危险化学品企业评估分级指南(大中型企业版)
- 2024版抗菌药物DDD值速查表
- 全员营销具体实施方案
- 学生干部培训2024年学生干部培训方案
- 大学实训室虚拟仿真平台网络VR实训室方案(建筑学科)
- 静脉治疗护理技术操作标准
- 教育心理学-形考作业4(第十至十一章)-国开-参考资料
评论
0/150
提交评论