福建省莆田市七中2024年数学高一下期末调研模拟试题含解析_第1页
福建省莆田市七中2024年数学高一下期末调研模拟试题含解析_第2页
福建省莆田市七中2024年数学高一下期末调研模拟试题含解析_第3页
福建省莆田市七中2024年数学高一下期末调研模拟试题含解析_第4页
福建省莆田市七中2024年数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省莆田市七中2024年数学高一下期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的周期为()A. B. C. D.2.如图,已知平行四边形,,则()A. B.C. D.3.下列四个函数中,与函数完全相同的是()A. B.C. D.4.在空间四边形中,,,,分别是,的中点,,则异面直线与所成角的大小为()A. B. C. D.5.已知,则的值等于()A. B. C. D.6.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数7.某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41 B.42 C.43 D.448.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.9.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设表示不超过的最大整数,则________12.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.13.如图,正方体的棱长为,动点在对角线上,过点作垂直于的平面,记这样得到的截面多边形(含三角形)的周长为,设,则当时,函数的值域__________.14.已知正实数满足,则的最大值为_______.15.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.16.已知,则的值为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解下列方程(1);(2);18.如图在四棱锥中,底面是矩形,点、分别是棱和的中点.(1)求证:平面;(2)若,且平面平面,证明平面.19.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔,速度为,飞行员在处先看到山顶的俯角为18°30′,经过后又在处看到山顶的俯角为81°(1)求飞机在处与山顶的距离(精确到);(2)求山顶的海拔高度(精确到)参考数据:,20.在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求内角B的大小;(2)设,,的最大值为5,求k的值.21.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.2、A【解析】

根据平面向量的加法运算,即可得到本题答案.【详解】由题,得.故选:A【点睛】本题主要考查平面向量的加法运算,属基础题.3、C【解析】

先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.4、D【解析】

平移两条异面直线到相交,根据余弦定理求解.【详解】如图所示:设的中点为,连接,所以,则是所成的角或其补角,又根据余弦定理得:,所以,异面直线与所成角的为,故选D.【点睛】本题考查异面直线所成的角和余弦定理.注意异面直线所成的角的取值范围是.5、B【解析】.6、C【解析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.7、A【解析】

由系统抽样.先确定分组间隔,然后编号成等差数列来求所抽取号码.【详解】由题知分组间隔为以,又第1组中抽取的号码为5,所以第7组中抽取的号码为.故选:A.【点睛】本题考查系统抽样,掌握系统抽样的概念与方法是解题基础.8、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.9、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.10、B【解析】

求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.12、【解析】

解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.13、【解析】

根据已知条件,所得截面可能是三角形,也可能是六边形,分别求出三角形与六边形周长的取值情况,即可得到函数的值域.【详解】如图:∵正方体的棱长为,∴正方体的对角线长为6,∵(i)当或时,三角形的周长最小.设截面正三角形的边长为,由等体积法得:∴∴,(ii)或时,三角形的周长最大,截面正三角形的边长为,∴(iii)当时,截面六边形的周长都为∴∴当时,函数的值域为.【点睛】本题考查多面体表面的截面问题和线面垂直,关键在于结合图形分析截面的三种情况,进而得出与截面边长的关系.14、【解析】

对所求式子平边平方,再将代入,从而将问题转化为求【详解】∵∵,∴,∴,等号成立当且仅当.故答案为:.【点睛】本题考查条件等式下利用基本不等式求最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意等号成立的条件.15、【解析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.16、【解析】

利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【详解】由得,,,两式相除得,,则.【点睛】本题主要考查和差化积公式以及二倍角公式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2);【解析】

(1)由,得,解方程即可.(2)由已知得到,解得即可.【详解】(1),,或,或.(2),,解得.【点睛】本题考查了指数型、对数型方程,考查了指数、对数的运算,属于基础题.18、(1)见证明;(2)见证明【解析】

(1)可证,从而得到要求证的线面平行.(2)可证,再由及是棱的中点可得,从而得到平面.【详解】(1)证明:因为点、分别是棱和的中点,所以,又在矩形中,,所以,又面,面,所以平面(2)证明:在矩形中,,又平面平面,平面平面,面,所以平面,又面,所以①因为且是的中点,所以,②由①②及面,面,,所以平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法可利用三角形的中位线或平行公理.线面垂直的判定可由线线垂直得到,注意线线是相交的,而要求证的线线垂直又可以转化为已知的线面垂直(有时它来自面面垂直)来考虑.19、(1)14981m(2)【解析】

(1)先求出飞机在150秒内飞行的距离,然后由正弦定理可得;(2)飞机,山顶的海拔的差为,则山顶的海拔高度为.【详解】解:(1)飞机在150秒内飞行的距离为,在中,由正弦定理,有,∴;(2)飞机,山顶的海拔的差为,,即山顶的海拔高度为.【点睛】本题主要考查正弦定理的应用,考查了计算能力,属于中档题.20、(1),(2)【解析】

解:(1)(3分)又在中,,所以,则………(5分)(2),.………………(8分)又,所以,所以.所以当时,的最大值为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论