山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题含解析_第1页
山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题含解析_第2页
山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题含解析_第3页
山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题含解析_第4页
山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省静乐县第一中学2023-2024学年数学高一下期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程的解所在的区间为()A. B.C. D.2.已知为第Ⅱ象限角,则的值为()A. B. C. D.3.函数则=()A. B. C.2 D.04.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.5.设是定义在上的偶函数,若当时,,则()A. B. C. D.6.已知,则满足的关系式是A.,且 B.,且C.,且 D.,且7.若,直线的倾斜角等于()A. B. C. D.8.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.9.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.10.下列条件不能确定一个平面的是()A.两条相交直线 B.两条平行直线 C.直线与直线外一点 D.共线的三点二、填空题:本大题共6小题,每小题5分,共30分。11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.12.已知正数、满足,则的最大值为__________.13.函数的最小正周期___________.14.已知,,若,则实数_______.15.已知,则与的夹角等于___________.16.若是等比数列,,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简求值:(1)化简:(2)求值,已知,求的值18.已知α,β为锐角,tanα=(1)求sin2α(2)求tanβ19.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.20.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.21.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.2、B【解析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【详解】因为,所以或,又为第Ⅱ象限角,故,.因为为第Ⅱ象限角即,所以,,即为第Ⅰ,Ⅲ象限角.由于,解得,故选B.【点睛】本题主要考查二倍角公式的应用以及象限角的集合应用.3、B【解析】

先求得的值,进而求得的值.【详解】依题意,,故选B.【点睛】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.4、B【解析】

依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.5、A【解析】

利用函数的为偶函数,可得,代入解析式即可求解.【详解】是定义在上的偶函数,则,又当时,,所以.故选:A【点睛】本题考查了利用函数的奇偶性求函数值,属于基础题.6、B【解析】

根据对数函数的性质判断.【详解】∵,∴,∵,∴,又,∴,故选B.【点睛】本题考查对数函数的性质,掌握对数函数的单调性是解题关键.7、A【解析】

根据以及可求出直线的倾斜角.【详解】,,且直线的斜率为,因此,直线的倾斜角为.故选:A.【点睛】本题考查直线倾斜角的计算,要熟悉斜率与倾斜角之间的关系,还要根据倾斜角的取值范围来求解,考查计算能力,属于基础题.8、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.9、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.10、D【解析】

根据确定平面的公理和推论逐一判断即可得解.【详解】解:对选项:经过两条相交直线有且只有一个平面,故错误.对选项:经过两条平行直线有且只有一个平面,故错误.对选项:经过直线与直线外一点有且只有一个平面,故错误.对选项:过共线的三点,有无数个平面,故正确;故选:.【点睛】本题主要考查确定平面的公理及推论.解题的关键是要对确定平面的公理及推论理解透彻,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、371【解析】

由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.12、【解析】

直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:【点睛】本题考查了均值不等式,意在考查学生的计算能力.13、【解析】

利用两角和的正弦公式化简函数表达式,由此求得函数的最小正周期.【详解】依题意,故函数的周期.故填:.【点睛】本小题主要考查两角和的正弦公式,考查三角函数最小正周期的求法,属于基础题.14、【解析】

利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.15、【解析】

利用再结合已知条件即可求解【详解】由,即,故答案为:【点睛】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题16、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【详解】(1)原式,(2)原式【点睛】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.18、(1)2425(2)【解析】

(1)结合α为锐角利用同角三角函数的关系,结合倍角公式即可求值;(2)结合α,β为锐角,求出tan(α+β),利用两角和的正切公式即可求出tan【详解】(1)因为α为锐角,tanα=43所以sin(2)因为α,β为锐角,cos(α+β)=-所以sin(α+β)=2因为tan(α+β)=tanα+tan【点睛】本题考查同角三角函数之间的关系以及倍角公式,同时考查了两角和的正切公式,属于中档题.19、(1)证明见解析(2)【解析】

(1)要证、、共线,只要证明存在实数,使得成立即可.

(2)利用向量共线的充要条件和两个非零向量与不共线即可求出.【详解】(1)证明:由.又,则.所以.所以、、共线.(2)和共线,则存在实数,使得成立.向量,不共线,所以,解得:所以当时,使和共线.【点睛】本题考查利用向量共线的充要条件证明点共线和求参数的值.20、(1)见解析;(2)见解析.【解析】

(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.21、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解析】

(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论