版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东深圳平湖外国语学校2024年数学高一下期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线互相平行,则的值为()A.4 B. C.5 D.2.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.3.长方体共顶点的三个相邻面面积分别为,这个长方体的顶点在同一个球面上,则这个球的表面积为()A. B. C. D.4.若,,,点C在AB上,且,设,则的值为()A. B. C. D.5.从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()A.57 B.59 C.26.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.7.若cosθ>0,且sin2θ<0,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知,若关于的不等式的解集中的整数恰有3个,则实数的取值范围是()A. B. C. D.9.已知两个非零向量,满足,则()A. B.C. D.10.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.182二、填空题:本大题共6小题,每小题5分,共30分。11.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.12.用列举法表示集合__________.13.若,则的值为_______.14.经过点,且在两坐标轴上的截距之和为2的直线的一般式方程为________.15.若,则=_________________16.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知三角形的三个顶点.(1)求BC边所在直线的方程;(2)求BC边上的高所在直线方程.18.已知,是平面内两个不共线的非零向量,,,且,,三点共线.(1)求实数的值;(2)若,,求的坐标;(3)已知,在(2)的条件下,若,,,四点按逆时针顺序构成平行四边形,求点的坐标.19.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.20.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?21.定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”.(1)已知是首项为2,公差为1的等差数列,若,是数列的保三角形函数”,求的取值范围;(2)已知数列的首项为2019,是数列的前项和,且满足,证明是“三角形”数列;(3)求证:函数,是数列1,,的“保三角形函数”的充要条件是,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.2、B【解析】
设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.3、A【解析】
设长方体的棱长为,球的半径为,根据题意有,再根据球的直径是长方体的体对角线求解.【详解】设长方体的棱长为,球的半径为,根据题意,,解得,所以,所以外接球的表面积,故选:A【点睛】本题主要考查了球的组合体问题,还考查了运算求解的能力,属于基础题.4、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.5、C【解析】试题分析:设事件为“从1,2,3,…,9这9个数中5个数的中位数是5”,则基本事件总数为种,事件所包含的基本事件的总数为:,所以由古典概型的计算公式知,,故应选.考点:1.古典概型;6、C【解析】
设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【点睛】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.7、D【解析】试题分析:且,,为第四象限角.故D正确.考点:象限角.8、A【解析】
将不等式化为,可知满足不等式,不满足不等式,由此可确定个整数解为;当和时,解不等式可知不满足题意;当时,解出不等式的解集,要保证整数解为,则需,解不等式组求得结果.【详解】由得:当时,成立必为不等式的一个整数解当时,不成立不是不等式的整数解个整数解分别为:当时,,不满足题意当时,解不等式得:或不等式不可能只有个整数解,不满足题意当时,,解得:,即的取值范围为:本题正确选项:【点睛】本题考查根据不等式整数解的个数求解参数范围问题,关键是能够利用特殊值确定整数解的具体取值,从而解不等式,根据整数解的取值来确定解集的上下限,构造不等式组求得结果.9、C【解析】
根据向量的模的计算公式,由逐步转化为,即可得到本题答案.【详解】由题,得,即,,则,所以.故选:C.【点睛】本题主要考查平面向量垂直的等价条件以及向量的模,化简变形是关键,考查计算能力,属于基础题.10、B【解析】
由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.12、【解析】
先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.13、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.14、【解析】
由题可知,直线在x上轴截距为-3,再利用截距式可直接求得直线方程【详解】∵直线过(0,5),∴直线在y轴上的截距为5,又直线在两坐标轴上的截距之和为2,∴直线在x轴上的截距为2-5=-3∴直线方程为,即5x-3y+15=0【点睛】直线方程有五种基本形式,在只知道横纵截距的情况下,截距式是最快捷的一种方式15、【解析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.16、【解析】
两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.【详解】圆与圆的方程相减得:,由圆的圆心,半径r为2,且圆心到直线的距离,则公共弦长为.故答案为.【点睛】此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由已知条件结合直线的两点式方程的求法求解即可;(2)先求出直线BC的斜率,再求出BC边上的高所在直线的斜率,然后利用直线的点斜式方程的求法求解即可.【详解】解:(1),,直线BC的方程为,即.(2),直线BC边上的高所在的直线的斜率为,又,直线BC边上的高的方程为:,即BC边上的高所在直线方程为.【点睛】本题考查了直线的两点式方程的求法,重点考查了直线的位置关系及直线的点斜式方程的求法,属基础题.18、(1);(2);(3).【解析】
(1)根据,,三点共线,列出向量与共线的表达式,然后根据坐标求解即可;(2)根据,列坐标即可求解;(3)根据平行四边形可以推出对边的向量相等,根据向量相等代入坐标求解即可求出点的坐标.【详解】(1),∵,,三点共线,∴存在实数,使得,即,得,∵,是平面内两个不共线的非零向量,∴,解得,;(2);(3)∵,,,四点按逆时针顺序构成平行四边形,∴,设,则,∵,∴,解得,即点的坐标为.【点睛】本题主要考查了平面向量共线,平面向量的线性运算,平面向量的相等,属于一般题.19、(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.20、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.21、(1);(2)见解析;(3)见解析.【解析】
(1)先由条件得是三角形数列,再利用,是数列的“保三角形函数”,得到,解得的取值范围;(2)先利用条件求出数列的通项公式,再证明其满足“三角形”数列的定义即可;(3)根据函数,,是数列1,,的“保三角形函数”,可以得到①1,,是三角形数列,所以,即,②数列中的各项必须在定义域内,即,③,,是三角形数列;结论为在利用,是单调递减函数,就可求出对应的范围,即可证明.【详解】(1)解:显然,对任意正整数都成立,即是三角形数列,因为,显然有,由得,解得,所以当时,是数列的“保
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某高中副校长在11月升旗活动上的讲话
- 2023年中考地理模拟卷(四)
- 湛江-PEP-2024年10版小学三年级下册英语第5单元寒假试卷
- 《管理学原理》期末考试复习题库(含答案)
- 骨盆骨折护理常规
- 云南省大理市2024-2025学年高三年级上册规模化统一检测地理试题(含答案)
- 2023年群路密码机系列投资申请报告
- 2024年密封垫及类似接合衬垫项目资金筹措计划书代可行性研究报告
- 强化财政投融资体制促进积极财政政策的实施
- 耐高温自润滑聚酰亚胺复合材料
- ICH-Q7活性药物成分(API)的GMP指南课件
- 丁醇安全技术说明书
- 注塑管理制度范本(5篇)
- 最新人教版七年级数学上册《数学活动》教学课件
- 《中国近代史纲要》社会实践作业
- 光伏发电合同能源管理项目招标文件
- 神经阻滞与术后镇痛课件
- 小学安全教育人教四年级上册安全生活家庭燃气泄漏的预防和处理 课件
- 综合管理部综合办公室工作交接表
- 中小学生营养知识、态度、行为及膳食多样性调查问卷
- 慢性鼻窦炎临床诊疗指南许庚
评论
0/150
提交评论