内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题含解析_第1页
内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题含解析_第2页
内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题含解析_第3页
内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题含解析_第4页
内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古锦山蒙古族中学2023-2024学年高一下数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.122.在等比数列中,,,,则等于()A. B. C. D.3.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.4.已知是圆的一条弦,,则()A. B. C. D.与圆的半径有关5.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.6.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.47.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.8.已知直线与圆交于M,N两点,若,则k的值为()A. B. C. D.9.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)10.的值等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.12.数列通项公式,前项和为,则________.13.已知向量、满足,,且,则与的夹角为________.14.中,,则A的取值范围为______.15.记Sn为等比数列{an}的前n项和.若,则S5=____________.16.直线在轴上的截距是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.组数第l组第2组第3组第4组第5组分组频数203630104(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.18.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.19.已知函数.(1)若关于的不等式的解集是,求,的值;(2)设关于的不等式的解集是,集合,若,求实数的取值范围.20.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间21.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】

直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.3、B【解析】

通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.4、C【解析】

由数量积的几何意义,利用外心的几何特征计算即可得解.【详解】是圆的一条弦,易知在方向上的投影恰好为,所以=||||==2.故选C.【点睛】本题考查了数量积的运算,利用定义求解要确定模长及夹角,属于基础题.5、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.6、C【解析】

将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.7、A【解析】

根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。8、C【解析】

先求得圆心到直线的距离,再根据圆的弦长公式求解.【详解】圆心到直线的距离为:由圆的弦长公式:得解得故选:C【点睛】本题主要考查了直线与圆的位置关系,还考查了运算求解的能力,属于基础题.9、D【解析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义10、D【解析】

利用诱导公式先化简,再利用差角的余弦公式化简得解.【详解】由题得原式=.故选D【点睛】本题主要考查诱导公式和差角的余弦公式化简求值,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.12、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.13、【解析】

直接应用数量积的运算,求出与的夹角.【详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【点睛】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.14、【解析】

由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.15、.【解析】

本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.16、【解析】

把直线方程化为斜截式,可得它在轴上的截距.【详解】解:直线,即,故它在轴上的截距是4,故答案为:.【点睛】本题主要考查直线方程的几种形式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)第1组2人,第3组3人,第4组1人;(3)【解析】

(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取的2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.18、(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.19、(1),.(2).【解析】分析:(1)先根据不等式解集与对应方程根的关系得x2-(a+1)x+1=0的两个实数根为m、2,再利用韦达定理得结果.(2)当A∩B=时,即不等式f(x)>0对x∈B恒成立,再利用变量分离法得a+1<x+的最小值,最后根据基本不等式求最值,即得结果.详解:(1)∵关于x的不等式f(x)<0的解集是{x|m<x<2},∴对应方程x2-(a+1)x+1=0的两个实数根为m、2,由根与系数的关系,得,解得a=,m=;(2)∵关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},当A∩B=时,即不等式f(x)>0对x∈B恒成立;即x∈时,x2-(a+1)x+1>0恒成立,∴a+1<x+对于x∈(0,1]恒成立(当时,1>0恒成立);∵当x∈(0,1]时,∴a+1<2,即a<1,∴实数a的取值范围是.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.20、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解析】

(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【点睛】本题主

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论