黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题含解析_第1页
黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题含解析_第2页
黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题含解析_第3页
黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题含解析_第4页
黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市第十九中学2023-2024学年高一下数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数y=sin2x的图象向右平移A.在区间[-πB.在区间[5πC.在区间[-πD.在区间[π2.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(

)A. B. C. D.3.已知向量,则()A.12 B. C. D.84.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.285.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.6.若偶函数在上是增函数,则()A. B.C. D.不能确定7.若向量互相垂直,且,则的值为()A. B. C. D.8.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+29.函数的单调增区间是()A. B.C. D.10.函数的最小值为(

)A.6 B.7 C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④12.在等差数列中,若,则__________.13.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.14.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.15.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.16.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.7818.如图,四边形ABCD是平行四边形,点E,F,G分别为线段BC,PB,AD的中点.(1)证明:EF∥平面PAC;(2)证明:平面PCG∥平面AEF;(3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.19.在中,已知点,边上的中线所在直线的方程为,边上的高所在直线的方程为.(1)求直线的方程;(2)求点的坐标.20.数列an,n∈N*各项均为正数,其前n项和为S(1)求证数列Sn2为等差数列,并求数列(2)设bn=24Sn4-1,求数列bn的前n21.已知,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

函数y=sin2x的图象向右平移y=sin2kπ-π单调递减区间:2kπ+π2≤2x-π3【详解】本题考查了正弦型函数图象的平移变换以及求正弦型函数的单调区间.2、A【解析】

画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.3、C【解析】

根据向量的坐标表示求出,即可得到模长.【详解】由题,,所以.故选:C【点睛】此题考查向量的数乘运算和减法运算的坐标表示,并求向量的模长,关键在于熟记公式,准确求解.4、B【解析】

根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.5、C【解析】

根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【点睛】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.6、B【解析】

根据偶函数性质与幂函数性质可得.【详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.7、B【解析】

首先根据题意得到,再计算即可.【详解】因为向量互相垂直,,所以.所以.故选:B【点睛】本题主要考查平面向量模长的计算,同时考查了平面向量数量积,属于简单题.8、C【解析】

直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.9、D【解析】

化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【点睛】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.10、C【解析】

直接利用均值不等式得到答案.【详解】,时等号成立.故答案选C【点睛】本题考查了均值不等式,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】

根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.12、【解析】

利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.13、【解析】

设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【点睛】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.14、【解析】

过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.16、③④【解析】

①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)选择更适宜作为产卵数关于温度的回归方程类型;(II);(III)要使得产卵数不超过50,则温度控制在以下.【解析】

(I)由于散点图类似指数函数的图像,由此选择.(II)对;两边取以为底底而得对数,将非线性回归的问题转化为线性回归的问题,利用回归直线方程的计算公式计算出回归直线方程,进而化简为回归曲线方程.(III)令,解指数不等式求得温度的控制范围.【详解】(I)依散点图可知,选择更适宜作为产卵数关于温度的回归方程类型。(II)因为,令,所以与可看成线性回归,,所以,所以,即,(III)由即,解得,要使得产卵数不超过50,则温度控制在以下。【点睛】本小题主要考查散点图的判断,考查非线性回归的求解方法,考查线性归回直线方程的计算公式,考查了利用回归方程进行预测.属于中档题.解题的关键点有两个,首先是根据散点图选择出恰当的回归方程,其次是要将非线性回归的问题,转化为线性回归来求解.18、(1)见解析(2)见解析(3)见解析【解析】

(1)证明,EF∥平面PAC即得证;(2)证明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AE,GC与BD分别交于M,N两点,证明N点为所找的H点.【详解】(1)证明:∵E、F分别是BC,BP中点,∴,∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴AE∥CG,∵AE⊄平面PCG,CG⊂平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC⊂平面PCG,EF⊄平面PCG,∴EF∥平面PCG,AE∩EF=E点,AE,EF⊂平面AEF,∴平面AEF∥平面PCG.(3)设AE,GC与BD分别交于M,N两点,易知F,N分别是BP,BM中点,∴,∵PM⊂平面PGC,FN⊄平面PGC,∴FN∥平面PGC,即N点为所找的H点.【点睛】本题主要考查空间平行位置关系的证明,考查立体几何的探究性问题的解决,意在考查学生对这些知识的理解掌握水平.19、(1)(2)【解析】

(1)先计算,过点,得到答案.(2)联立直线方程:解得答案.【详解】解:(1)由边上的高所在直线方程为得,则.又∵,∴直线的方程为,即(或).(2)因为边上的中线过点,则联立直线方程:.解得:,即点坐标为.【点睛】本题考查了直线方程,意在考查学生的计算能力.20、(1)证明见解析,an【解析】

(1)由题得Sn2-Sn-12=1(n≥2),即得数列Sn2为首项和公差都是1【详解】(1)证明:∵2anSn-an整理得,Sn又S1∴数列Sn2为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论