版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏州新区一中2024年高一数学第二学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若且则的值是().A. B. C. D.2.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为14.若数列,若,则在下列数列中,可取遍数列前项值的数列为()A. B. C. D.5.在等差数列中,,则的值()A. B. C. D.6.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天7.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.08.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.9.为了得到函数的图象,可以将函数的图象()A.向左平移 B.向右平移C.向左平移 D.向右平移10.已知集合,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______.12.若,则__________.13.已知为所在平面内一点,且,则_____14.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项15.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;16.如图,在中,已知点在边上,,,则的长为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;19.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.20.如图,是正方形,是该正方形的中心,是平面外一点,底面,是的中点.求证:(1)平面;(2)平面平面.21.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题设,又,则,所以,,应选答案C.点睛:角変换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.2、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质3、C【解析】
根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率4、D【解析】
推导出是以6为周期的周期数列,从而是可取遍数列前6项值的数列.【详解】数列,,,,,,,,,是以6为周期的周期数列,是可取遍数列前6项值的数列.故选:D.【点睛】本题考查数列的周期性与三角函数知识的交会,考查基本运算求解能力,求解时注意函数与方程思想的应用.5、B【解析】
根据等差数列的性质,求得,再由,即可求解.【详解】根据等差数列的性质,可得,即,则,故选B.【点睛】本题主要考查了等差数列的性质,以及特殊角的三角函数值的计算,着重考查了推理与运算能力,属于基础题.6、A【解析】
设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.7、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.8、A【解析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【点睛】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.9、B【解析】
利用的图象变换规律,即可求解,得出结论.【详解】由题意,函数,,又由,故把函数的图象上所有的点,向右平移个单位长度,可得的图象,故选:B.【点睛】本题主要考查了三角函数的图象变换规律,其中解答中熟记三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】
先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.12、;【解析】
易知的周期为,从而化简求得.【详解】的周期为,且,又,.故答案为:【点睛】本题考查了正弦型函数的周期以及利用周期求函数值,属于基础题.13、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.14、【解析】
先求,利用二次函数性质求最值即可【详解】由题当时最小故答案为8【点睛】本题考查等差数列的求和公式,考查二次函数求最值,是基础题15、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.16、【解析】
由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.18、(1)见解析;(2)见解析;【解析】
(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根据点,的坐标即可求出,从而可求出;(Ⅱ)可以求出,根据即可得出,解出即可.【详解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.20、(1)见解析;(2)见解析.【解析】
(1)连接,证明后即得线面平行;(2)可证明平面,然后得面面垂直.【详解】(1)如图,连接,∵分别是中点,∴,又平面,平面,∴平面;(2)∵,底面,底面,∴,又正方形中,,∴平面,而平面,∴平面平面.【点睛】本题考查证明线面平行和面面垂直,掌握线面平行和面面垂直的判定定理是解题关键.21、(1);(2);【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《汽车结构图解明细》课件
- 国家科技安全教学课件
- 小学生飞行原理课件
- 广东省2024-2025学年八年级上学期期末调研考试地理试题(解析版)
- 《灿烂的青铜文明》课件
- 《木质包装材料标准》课件
- 《木材知识介绍》课件
- 《心理咨询咨技巧》课件
- 2021年初级会计职称备考会计实务教材章节考点基础精讲重点知识总结配真题全
- 2021年城市管理类知识竞赛试题及答案
- 2024国家开放大学基础写作形考任务2试题及答案
- 2023-2024学年江苏省苏州市高一(上)期末地理试卷
- 干法读书会分享
- 进阶练12 材料作文(满分范文20篇)(解析版)-【挑战中考】备战2024年中考语文一轮总复习重难点全攻略(浙江专用)
- 骨质疏松的中医中药治疗
- 卫浴销售部门年终总结
- 机场安检突发事件应急预案
- 2024年高考真题-化学(天津卷) 含解析
- 安徽省芜湖市2023-2024学年高二上学期期末考试 物理 含解析
- 2024年招投标培训
- 人教A版(新教材)高中数学选择性必修第三册学案2:7 1 1 条件概率
评论
0/150
提交评论