5.2定积分的性质_第1页
5.2定积分的性质_第2页
5.2定积分的性质_第3页
5.2定积分的性质_第4页
5.2定积分的性质_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等数学主讲人

宋从芝河北工业职业技术学院

本讲概要定积分的性质典型例题5.2定积分的性质下面各性质中,假定

f(x),g

(x)在[a,b]上都连续。性质1

两个函数和(差)的定积分等于它们定积分的和(差),即性质2

被积函数的常数因子可以提到积分外面,即一.定积分的性质

c<a<b

a<b<c时,性质3(积分区间的可加性)

如果积分区间

[a,b]

被点

c分成两个区间

[a,c]

[c,b],那么当点

c不介于

a

b

之间,结论仍正确。练习

①计算下列各式:②练习

①计算下列各式:②练习

③计算下列各式:④性质4

如果在

[a,b]

上被积函数

f(x)1

,那么O

x

y

a

b

y=1推论(定积分的保号性)那么≤

bO

y=f(x)

y=g(x)

x

y

a如果在区间

[a,b]

上有

f(x)≤

g(x),性质5(估值定理)

区间

[a,b]上的最大值和最小值,则几何解释是:在

[a,b]

上的曲边梯形面积介于以

m

和M为高的两个矩形面积之间。m(b-

a)≤≤y=f(x)yxabmMOBA设

M和m分别是函数

f(x)在M(b-

a)性质6(积分中值定理)=f(x

)(b-

a)则在区间

[a,b]

上至少存在一点

x,使下式成立:如果函数

f(x)在区间

[a,b]上连续,在[a,b]

上至少能找到一点

x,使以f(x)为高,[a,b]

为底的矩形面积等于曲边梯形的面积。yxOf(x)xy=f(x)abNM几何解释是:例1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论