




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省五市十校教研教改共同体高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.92.某校高一甲、乙两位同学的九科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科平均分不同 B.甲、乙两人的中位数相同C.甲各科成绩比乙各科成绩稳定 D.甲的众数是83,乙的众数为873.下列函数中,图象的一部分如图所示的是()A. B.C. D.4.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形5.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为6.函数图像的一个对称中心是()A. B. C. D.7.英国数学家布鲁克泰勒(TaylorBrook,1685~1731)建立了如下正、余弦公式(
)其中,,例如:.试用上述公式估计的近似值为(精确到0.01)A.0.99 B.0.98 C.0.97
D.0.968.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,329.若,则等于()A. B. C. D.10.已知函数,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和是,且,则______.(写出两个即可)12.已知向量,若向量与垂直,则等于_______.13.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.14.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)15.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.16.设变量满足条件,则的最小值为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.18.已知数列的前项和为,且满足.(1)求证:数列是等比数列;(2)设,数列的前项和为,求证:.19.如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.20.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.21.如图,在四边形中,.(1)若为等边三角形,且是的中点,求.(2)若,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.2、C【解析】
分别计算出甲、乙两位同学成绩的平均分、中位数、众数,由此确定正确选项.【详解】甲的平均分为,乙的平均分,两人平均分相同,故A选项错误.甲的中位数为,乙的中位数为,两人中位数不相同,故B选项错误.甲的众数是,乙的众数是,故D选项错误.所以正确的答案为C.由茎叶图可知,甲的数据比较集中,乙的数据比较分散,所以甲比较稳定.(因为方差运算量特别大,故不需要计算出方差.)故选:C【点睛】本小题主要考查根据茎叶图比较平均数、中位数、众数、方差,属于基础题.3、D【解析】
设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.4、A【解析】
本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【点睛】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.5、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.6、B【解析】
由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.7、B【解析】
利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得,故答案为B【点睛】本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.9、B【解析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.10、A【解析】
由题意结合函数的解析式分别求得的值,然后求解两者之差即可.【详解】由题意可得:,,则.故选:A.【点睛】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.12、2【解析】
根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.13、或【解析】
由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.14、①③【解析】
由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.15、.【解析】
令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【点睛】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.16、-1【解析】
根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),或.【解析】
(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【点睛】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.18、(1)见证明;(2)见证明【解析】
(1)由,得,两式作差可得,利用等比数列的定义,即可作出证明;(2)由(1)可得,得到,利用裂项法求得数列的和,即可作出证明.【详解】(1)证明:由,得,两式作差可得:,即,即,又,得,所以数列是首项为,公比为的等比数列;(2)由(1)可得,数列的通项公式为,又由,所以.所以.【点睛】本题主要考查了等比数列的定义,以及数列“裂项法”求和的应用,其中解答中熟记等比数列的定义和通项,以及合理利用数列的“裂项法”求得数列的前n项和是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)见解析;(2)见解析.【解析】试题分析:(1)设,连接,因为O,E分别为AC,中点,所以(2)平面,所以平面平面考点:线面平行垂直的判定点评:平面内一直线与平面外一直线平行,则线面平行;直线垂直于平面内两相交直线则直线垂直于平面,进而得到两面垂直20、(1)(2)三段人数分别为3,2,1(3)【解析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人数为n,由,可得n=1000,从而体重超过65kg的总人数300,由此能求出各组应分别抽取的人数;(3)利用频率分布直方图能估计高二男生的体重的中位数与平均数试题解析:(1)体重在内的频率补全的频率分布直方图如图所示.(2)设男生总人数为,由,可得体重超过的总人数为在的人数为,应抽取的人数为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024育婴师知识体系试题及答案
- 学校打造精细化教学管理
- 2024计算机二级考试指南试题及答案
- 广泛话题福建三支一扶考试试题及答案
- 黑龙江生态工程职业学院《外语教学与信息技术应用》2023-2024学年第一学期期末试卷
- 黑龙江省双城市兆麟中学2024-2025学年高三下学期开学摸底(文理合卷)物理试题含解析
- 黑龙江省哈尔滨市道里区重点中学2025届初三5月月考(化学试题理)试卷含解析
- 黑龙江省大兴安岭漠河县一中2025年高三下学期1月第一次联合考试生物试题含解析
- 黑龙江省牡丹江一中学2025届初三考前冲刺模拟预测题化学试题试卷含解析
- 黑龙江省绥化市绥棱县林业局中学2025届高三下学期零诊模拟语文试题含解析
- 妊娠合并风湿性心脏病
- 2024年全国(市场调查及营销)专业技能知识考试题库与答案
- 公司银行账户变更函-文书模板
- 一线员工培训方案
- 重力势能-说课课件
- 2024年山东省东营市中考地理试题卷(含答案解析)
- 事业单位考试题库:公文写作能力测试试题及答案-综合应用能力
- 钢铁项目环评报告 - 3区域环境概况
- 2024年单招职业技能测试题库及参考答案(基础题)
- 小学综合实践活动二年级下册第二单元《方格编》课件
- 2024年福建厦门中考语文试题及答案1
评论
0/150
提交评论