版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省五市十校2024届高一数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量互相垂直,且,则的值为()A. B. C. D.2.不等式的解集为()A. B. C. D.3.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.4.已知,,且,,则的值为()A. B.1 C. D.5.设是两条不同的直线,是两个不同的平面,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则6.已知直线与,若,则()A.2 B.1 C.2或-1 D.-2或17.已知三个内角、、的对边分别是,若则的面积等于()A. B. C. D.8.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.9.已知函数,(),若对任意的(),恒有,那么的取值集合是()A. B. C. D.10.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列an中,a3=2,a12.不等式的解集是______.13.已知直线和,若,则a等于________.14.函数f(x)=coscos的最小正周期为________.15.等差数列中,,则其前12项之和的值为______16.方程cosx=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.(1)经计算估计这组数据的中位数;(2)现按分层抽样从质量为,的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:A:所有芒果以10元/千克收购;B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?18.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的解析式.19.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.20.已知,求(1)(2)21.已知数列的前项和为(1)证明:数列是等差数列;(2)设,求数列的前2020项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
首先根据题意得到,再计算即可.【详解】因为向量互相垂直,,所以.所以.故选:B【点睛】本题主要考查平面向量模长的计算,同时考查了平面向量数量积,属于简单题.2、A【解析】
因式分解求解即可.【详解】,解得.故选:A【点睛】本题主要考查了二次不等式的求解,属于基础题.3、B【解析】
试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.4、A【解析】
由已知求出,的值,再由,展开两角差的余弦求解,即可得答案.【详解】由,,且,,,,∴,∴,.故选:A.【点睛】本题考查两角和与差的余弦、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意“拆角配角”思想的运用.5、D【解析】
对于A,利用线面平行的判定可得A正确.对于B,利用线面垂直的性质可得B正确.对于C,利用面面垂直的判定可得C正确.根据平面与平面的位置关系即可判断D不正确.【详解】对于A,根据平面外的一条直线与平面内的一条直线平行,则这条直线平行于这个平面,可判定A正确.对于B,根据垂直于同一个平面的两条直线平行,判定B正确.对于C,根据一个平面过另一个平面的垂线,则这两个平面垂直,可判定C正确.对于D,若,则或相交,所以D不正确.故选:D【点睛】本题主要考查了线面平行和面面垂直的判定,同时考查了线面垂直的性质,属于中档题.6、C【解析】
由两直线平行的等价条件,即可得到本题答案.【详解】因为,所以,解得或.故选:C【点睛】本题主要考查利用两直线平行的等价条件求值.7、B【解析】
根据三角的面积公式求解.【详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.8、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.9、A【解析】当时,,画出图象如下图所示,由图可知,时不符合题意,故选.【点睛】本题主要考查含有绝对值的不等式的解法,考查选择题的解题策略中的特殊值法.主要的需要满足的是,根据不等式的解法,大于在中间,小于在两边,可化简为,左右两边为二次函数,中间可以由对数函数图象平移得到,由此画出图象验证是否符合题意.10、C【解析】
通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.12、【解析】
由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.13、【解析】
根据两直线互相垂直的性质可得,从而可求出的值.【详解】直线和垂直,.解得.故答案为:【点睛】本题考查了直线的一般式,根据两直线的位置关系求参数的值,熟记两直线垂直系数满足:是关键,属于基础题.14、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==215、【解析】
利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.16、x|x=2kπ±【解析】
由诱导公式可得cosx=sinπ【详解】因为方程cosx=sinπ所以x=2kπ±π故答案为x|x=2kπ±π【点睛】本题考查解三角函数的方程,余弦函数的周期性和诱导公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)中位数为268.75;(2);(3)选B方案【解析】
(1)根据中位数左右两边的频率均为0.5求解即可.(2)利用枚举法求出所以可能的情况,再利用古典概型方法求解概率即可.(3)分别计算两种方案的获利再比较大小即可.【详解】(1)由频率分布直方图可得,前3组的频率和为,前4组的频率和为,所以中位数在内,设中位数为,则有,解得.故中位数为268.75.(2)设质量在内的4个芒果分别为,,,,质量在内的2个芒果分别为,.从这6个芒果中选出3个的情况共有,,,,,,,,,,,,,,,,,,,,共计20种,其中恰有一个在内的情况有,,,,,,,,,,,,共计12种,因此概率.(3)方案A:元.方案B:由题意得低于250克:元;高于或等于250克元.故总计元,由于,故B方案获利更多,应选B方案.【点睛】本题主要考查了频率分布直方图的用法以及古典概型的方法,同时也考查了根据样本估计总体的方法等.属于中等题型.18、(1)见解析;(2);(3).【解析】
(1)通过判断函数的单调性,求出的值域,进而可判断在上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数的取值范围;(3)通过分离常数法求的值域,利用新定义进而求得的解析式.【详解】(1)当时,,由于在上递减,∴函数在上的值域为,故不存在常数,使得成立,∴函数在上不是有界函数(2)在上是以3为上界的有界函数,即,令,则,即由得,令,在上单调递减,所以由得,令,在上单调递增,所以所以;(3)在上递减,,即,当时,即当时,当时,即当时,∴.【点睛】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.19、(1)(2)【解析】
(1)求出公差,由公式得通项公式;(2)由(1)求出,计算公比,再由等比数列前项和公式得和.【详解】(1)在等差数列中,,故设的公差为,则,即,所以,所以.(2)设数列的公比为,则,所以.【点睛】本题考查等差数列与等比数列的基本量法.求出数列的首项和公差(或公比),则数列的通项公式与前项和随之而定.20、(1)(2)【解析】
利用同角三角函数基本关系式化弦为切,即可求解(1)(2)的值,得到答案.【详解】(1)由题意,知,则;(2)由==.【点睛】本题主要考查了三角函数的化简求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年机械密封行业中密控股分析报告
- 2021年化工行业分析报告
- GSM蜂窝移动通信系统相关行业投资方案范本
- 室外环境清洁电器相关行业投资规划报告
- 2024-2025学年云南省昆明市五华区红旗小学人教版四年级上册期中测试数学试卷-A4
- 《数字系统设计概述》课件
- 《数据可视化》课件
- 椅子设计报告范文大全
- 妇联主任离职报告范文
- 《数字逻辑与EDA设计》课件-第4章
- 数据库原理与MySQL应用-5 存储函数与存储过程
- 仓库安全检查记录表
- DBJ04-T 434-2022 隐式框架钢结构工程技术标准
- 玉米区域试验技术规程与田间调查标准
- 上海市崇明区2021届一模作文《走出“撕裂感”》等5篇
- 履带吊安装、拆除安全交底
- (完整版)地质制图一般规定
- 我们的衣食之源教案-四年级道德与法治下册
- 互换性与技术测量全书ppt课件汇总(完整版)
- After-Effects影视特效设计教程完整版ppt全套教学教程(最新)
- 分支机构办公营业用房租赁、装修管理办法
评论
0/150
提交评论