2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年汇文中学高一数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线l过点且与直线垂直,则l的方程是()A. B.C. D.2.已知点和点,且,则实数的值是()A.5或-1 B.5或1 C.2或-6 D.-2或63.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.04.已知角的终边经过点(3,-4),则的值为()A. B. C. D.5.在中,,,其面积为,则等于()A. B. C. D.6.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.7.在平行四边形中,为一条对角线,,,则=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)8.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位9.在学习等差数列时,我们由,,,,得到等差数列的通项公式是,象这样由特殊到一般的推理方法叫做()A.不完全归纳法 B.数学归纳法 C.综合法 D.分析法10.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集为_________.12.等比数列满足其公比_________________13.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.14.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.15.已知三个顶点的坐标分别为,若⊥,则的值是______.16.的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.18.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?19.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.20.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.21.若不等式的解集是.(1)求的值;(2)当为何值时,的解集为.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

直线2x–3y+1=0的斜率为则直线l的斜率为所以直线l的方程为故选A2、A【解析】

根据空间中两点间距离公式建立方程求得结果.【详解】解得:或本题正确选项:【点睛】本题考查空间中两点间距离公式的应用,属于基础题.3、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.4、A【解析】

先求出的值,即得解.【详解】由题得,,所以.故选A【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.5、A【解析】

先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.6、A【解析】由,得,所以在复平面内对应的点为,故选A.7、C【解析】试题分析:,故选C.考点:平面向量的线性运算.8、D【解析】

根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题9、A【解析】

根据题干中的推理由特殊到一般的推理属于归纳推理,但又不是数学归纳法,从而可得出结果.【详解】本题由前三项的规律猜想出一般项的特点属于归纳法,但本题并不是数学归纳法,因此,本题中的推理方法是不完全归纳法,故选:A.【点睛】本题考查归纳法的特点,判断时要区别数学归纳法与不完全归纳法,考查对概念的理解,属于基础题.10、D【解析】

根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【点睛】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【详解】同解于解得或故答案为:【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.12、【解析】

观察式子,将两式相除即可得到答案.【详解】根据题意,可知,于是.【点睛】本题主要考查等比数列公比的相关计算,难度很小.13、【解析】

先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题14、【解析】

用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.15、【解析】

求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.16、【解析】

直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明;(3)【解析】

(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.18、在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大【解析】

可建立如图所示的平面直角坐标系,根据截距式写出AB所在直线方程,然后可设G点的坐标为,再根据题目中的要求可列出教学楼的面积的表达式,,然后利用一元二次函数求最值即可.【详解】解:如图建立坐标系,可知所在直线方程为,即.设,由可知.∴.由此可知,当时,有最大值289平方米.故在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.【点睛】本题考查一元二次函数求最值解决实际问题,属于中档题19、(1)见证明;(2)4【解析】

(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.20、(1)证明见解析;(2).【解析】

(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【点睛】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论