版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省烟台市莱州市一中高一下数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于的不等式的解集为,则的值为()A.4 B.5 C.7 D.92.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.163.已知直线l和平面,若直线l在空间中任意放置,则在平面内总有直线和A.垂直 B.平行 C.异面 D.相交4.函数的图象与函数的图象交点的个数为()A. B. C. D.5.在中,,BC边上的高等于,则()A. B. C. D.6.的周期为()A. B. C. D.7.已知向量若为实数,则=()A.2 B.1 C. D.8.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.29.如图,在中,已知D是边延长线上一点,若,点E为线段的中点,,则()A. B. C. D.10.若,满足不等式组,则的最小值为()A.-5 B.-4 C.-3 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则____________________________.12.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.13.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.14.已知函数在一个周期内的图象如图所示,则的解析式是______.15.在中,.以为圆心,2为半径作圆,线段为该圆的一条直径,则的最小值为_________.16.不等式的解集是_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形ABCD是平行四边形,点E,F,G分别为线段BC,PB,AD的中点.(1)证明:EF∥平面PAC;(2)证明:平面PCG∥平面AEF;(3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.18.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.19.已知函数的最小正周期为,且直线是其图象的一条对称轴.(1)求函数的解析式;(2)在中,角、、所对的边分别为、、,且,,若角满足,求的取值范围;(3)将函数的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数记作,已知常数,,且函数在内恰有个零点,求常数与的值.20.某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:245683040605070(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10万元时,销售额为多少?附:公式为:,参考数字:,.21.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将原不等式化简后,根据不等式的解集列方程组,求得的值,进而求得的值.【详解】由得,依题意上述不等式的解集为,故,解得(舍去),故.故选:D.【点睛】本小题主要考查类似:已知一元二次不等式解集求参数,考查函数与方程的思想,属于基础题.2、B【解析】
由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【点睛】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】
本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下再讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.【详解】当直线l与平面相交时,平面内的任意一条直线与直线l的关系只有两种:异面、相交,此时就不可能平行了,故B错.当直线l与平面平行时,平面内的任意一条直线与直线l的关系只有两种:异面、平行,此时就不可能相交了,故D错.当直线a在平面内时,平面内的任意一条直线与直线l的关系只有两种:平行、相交,此时就不可能异面了,故C错.不管直线l与平面的位置关系相交、平行,还是在平面内,都可以在平面内找到一条直线与直线垂直,因为直线在异面与相交时都包括垂直的情况,故A正确.故选:A.【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,考查空间想象能力和思维能力.4、D【解析】
通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.5、C【解析】试题分析:设,故选C.考点:解三角形.6、D【解析】
根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.7、D【解析】
求出向量的坐标,然后根据向量的平行得到所求值.【详解】∵,∴.又,∴,解得.故选D.【点睛】本题考查向量的运算和向量共线的坐标表示,属于基础题.8、B【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9、B【解析】
由,,,,代入化简即可得出.【详解】,带人可得,可得,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.10、A【解析】
画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.【详解】画出,满足不等式组表示的平面区域,如图所示平移目标函数知,当目标函数过点时,取得最小值,由得,即点坐标为∴的最小值为,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
分子、分母同除以,将代入化简即可.【详解】因为,所以,故答案为.【点睛】本题主要考查同角三角函数之间的关系的应用,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.12、【解析】
分别求出{}、{}的通项公式,再统一形式即可得解。【详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【点睛】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。13、【解析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.14、【解析】
由图象得出,得出该函数图象的最小正周期,可得出,再将点的坐标代入函数的解析式,结合该函数在附近的单调性求得的表达式,即可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,,则,由于函数的图象过点,且在附近单调递增,所以,,,因此,.故答案为:.【点睛】本题考查利用三角函数的图象求解析式,一般要结合图象依次求出、、的值,在利用对称中心求时,要结合函数在对称中心附近的单调性来求解,考查计算能力,属于中等题.15、-10【解析】
向量变形为,化简得,转化为讨论夹角问题求解.【详解】由题线段为该圆的一条直径,设夹角为,可得:,当夹角为时取得最小值-10.故答案为:-10【点睛】此题考查求平面向量数量积的最小值,关键在于根据平面向量的运算法则进行变形,结合线性运算化简求得,此题也可建立直角坐标系,三角换元设坐标利用函数关系求最值.16、【解析】
可先求出一元二次方程的两根,即可得到不等式的解集.【详解】由于的两根分别为:,,因此不等式的解集是.【点睛】本题主要考查一元二次不等式的求解,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)见解析【解析】
(1)证明,EF∥平面PAC即得证;(2)证明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AE,GC与BD分别交于M,N两点,证明N点为所找的H点.【详解】(1)证明:∵E、F分别是BC,BP中点,∴,∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴AE∥CG,∵AE⊄平面PCG,CG⊂平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC⊂平面PCG,EF⊄平面PCG,∴EF∥平面PCG,AE∩EF=E点,AE,EF⊂平面AEF,∴平面AEF∥平面PCG.(3)设AE,GC与BD分别交于M,N两点,易知F,N分别是BP,BM中点,∴,∵PM⊂平面PGC,FN⊄平面PGC,∴FN∥平面PGC,即N点为所找的H点.【点睛】本题主要考查空间平行位置关系的证明,考查立体几何的探究性问题的解决,意在考查学生对这些知识的理解掌握水平.18、(1);(2)或.【解析】
(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.【详解】(1)圆心到直线的距离.直线与圆相切,.圆的标准方程为:.(2)①当直线的斜率存在时,设直线的方程:,即:,,又,.解得:.直线的方程为:.②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.综上所述的方程为:或.【点睛】本题考查直线与圆的相切的性质、点到直线的距离公式、弦长公式、分类讨论方法,考查推理能力与计算能力,属于中档题.19、(1);(2);(3),.【解析】
(1)由函数的周期公式可求出的值,求出函数的对称轴方程,结合直线为一条对称轴结合的范围可得出的值,于此得出函数的解析式;(2)由得出,再由结合锐角三角函数得出,利用正弦定理以及内角和定理得出,由条件得出,于此可计算出的取值范围;(3)令,得,换元得出,得出方程,设该方程的两根为、,由韦达定理得出,分(ii)、;(ii),;(iii),三种情况讨论,计算出关于的方程在一个周期区间上的实根个数,结合已知条件得出与的值.【详解】(1)由三角函数的周期公式可得,,令,得,由于直线为函数的一条对称轴,所以,,得,由于,,则,因此,;(2),由三角形的内角和定理得,.,且,,.,由,得,由锐角三角函数的定义得,,由正弦定理得,,,,且,,,.,因此,的取值范围是;(3)将函数的图象向右平移个单位,得到函数,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的倍后所得到的图象对应的函数为,,令,可得,令,得,,则关于的二次方程必有两不等实根、,则,则、异号,(i)当且时,则方程和在区间均有偶数个根,从而方程在也有偶数个根,不合乎题意;(ii)当,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则方程在上有个根,由于方程在区间上只有一个根,在区间上无实解,方程在区间上无实数解,在区间上有两个根,因此,关于的方程在区间上有个根,在区间上有个根,不合乎题意;(iii)当时,则,当时,只有一根,有两根,所以,关于的方程在上有三个根,由于,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年5G网络覆盖工程承建合同
- 2024年全球供应链服务条款
- 一年级下册数学教案- 6.9 100以内的加法和减法(一)∣人教新课标
- 人教版九年级物理全一册第17章第3节电阻的测量教案
- 中班体育活动教案:原地运球
- 二年级上册数学教案-第二单元 两位数减两位数 第五课时∣人教新课标
- 学生手机使用安全管理制度
- 2024年农业种植与销售合同
- 大班户外游戏教案:多变的沙子
- 一年级上册数学导学案-3.3 第几∣人教新课标
- 三界天人表格-
- 化学奥赛复习 专题11电子效应
- 内分泌系统和营养代谢性疾病总论PPT课件
- (完整版)建筑工程设计文件编制深度规定(2016)
- 全新版大学英语综合教程1Unit3课件.ppt
- 抓斗式挖泥船疏浚施工方案(共7页)
- 国家标准-》印制电路板设计规范
- 哈尔滨医科大学附属第一医院ppt课件
- 半导体简答题
- 某水库新建码头初步设计
- 理论力学试题题目含参考答案
评论
0/150
提交评论