浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题含解析_第1页
浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题含解析_第2页
浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题含解析_第3页
浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题含解析_第4页
浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市“十五校联合体”2025届数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为()A. B. C. D.2.化简=()A. B.C. D.3.若向量,,且,则=()A. B.- C. D.-4.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.5.已知数列满足是数列的前项和,则()A. B. C. D.6.若,则与夹角的余弦值为()A. B. C. D.17.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数8.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.9.在平面直角坐标系中,为坐标原点,为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的坐标为()A. B. C. D.10.已知函数的部分图象如图,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为______.13.若数列满足,,则______.14.某几何体的三视图如图所示,则该几何体的体积为__________.15.382与1337的最大公约数是__________.16.在中,角的对边分别为.若,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.18.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.19.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.20.已知都是第二象限的角,求的值。21.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.2、D【解析】

根据向量的加法与减法的运算法则,即可求解,得到答案.【详解】由题意,根据向量的运算法则,可得=++==,故选D.【点睛】本题主要考查了向量的加法与减法的运算法则,其中解答中熟记向量的加法与减法的运算法则,准确化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.3、B【解析】

根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.4、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.5、D【解析】

由已知递推关系式可以推出数列的特征,即数列和均是等比数列,利用等比数列性质求解即可.【详解】解:由已知可得,当时,由得,所以数列和均是公比为2的等比数列,首项分别为2和1,由等比数列知识可求得,,故选:D.【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.6、A【解析】

根据向量的夹角公式,准确运算,即可求解,得到答案.【详解】由向量,则与夹角的余弦值为,故选A.【点睛】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】

利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.8、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.9、C【解析】

由题意利用任意角的三角函数的定义,诱导公式,求得点的坐标.【详解】为单位圆上一点,以轴为始边,为终边的角为,,若将绕点顺时针旋转至,则点的横坐标为,点的纵坐标为,故点的坐标为.故选C.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,考查基本的运算求解能力.10、B【解析】

根据函数的部分图象求出、、和的值,写出的解析式,再计算的值.【详解】根据函数,,的部分图象知,,,,解得;由五点法画图知,,解得;,.故选.【点睛】本题主要考查利用三角函数的部分图象求函数解析式以及利用两角和的正弦公式求三角函数的值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.12、0.56【解析】

根据在一次射击中,甲、乙同时射中目标是相互独立的,利用相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲的中靶概率为0.8,乙的中靶概率为0.7,所以两人均中靶的概率为,故答案为0.56【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,其中解答中合理利用相互独立的概率乘法公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【详解】得,,所以有,因此.故答案为:【点睛】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.14、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.15、191【解析】

利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.16、1009【解析】

利用余弦定理化简所给等式,再利用正弦定理将边化的关系为角的关系,变形化简即可得出目标比值.【详解】由得,即,所以,故.【点睛】本题综合考查正余弦定理解三角形,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)证明见详解,,.【解析】

(1)根据递推公式,赋值求解即可;(2)利用定义,求证为定值即可,由数列通项公式即可求得和.【详解】(1)由条件可得,将代入得,,而,所以.将代入得,所以.从而,,.(2)由条件可得,即,,又,所以是首项为1,公比为3的等比数列,.因为,所以.【点睛】本题考查利用递推关系求数列某项的值,以及利用数列定义证明等比数列,及求通项公式,是数列综合基础题.18、(1)(2)【解析】

(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解即可.【详解】解:(1)∵所求直线的倾斜角为,斜率,又∵经过,故方程为∴即方程为.(2)∵所求直线在轴上的截距是-5,又有斜率,故方程为∴所求方程为【点睛】本题主要考查了直线斜率与倾斜角的关系以及直线方程的点斜式运用.属于基础题.19、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立问题的处理及分类讨论的数学思想,综合性强.20、;【解析】

根据所处象限可确定的符号,利用同角三角函数关系可求得的值;代入两角和差正弦和余弦公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论