版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省上饶市横峰中学高一数学第二学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个扇形的弧长与面积都是3,则这个扇形圆心角的弧度数为()A. B. C. D.2.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直3.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.484.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π5.设,,,若则,的值是()A., B.,C., D.,6.已知各项均为正数的等比数列,若,则的值为()A.-4 B.4 C. D.07.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.178.若数列的前n项的和,那么这个数列的通项公式为()A. B.C. D.9.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.10.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量满足,则与的夹角的余弦值为__________.12.已知,则.13.在数列中,若,则____.14.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.15.已知,,则______.16.函数的最小正周期是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(I)比较,的大小.(II)求函数的最大值.18.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.19.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求证:平面ABCD;(II)求证:平面ACF⊥平面BDF.20.针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持岁以下岁以上(含岁)(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;(2)在接受调查的人中,有人给这项活动打出的分数如下:,,,,,,,,,,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过的概率.21.如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据扇形的弧长与面积公式,代入已知条件即可求解.【详解】设扇形的弧长为,面积为,半径为,圆心角弧度数为由定义可得,代入解得rad故选:B【点睛】本题考查了扇形的弧长与面积公式应用,属于基础题.2、D【解析】略3、C【解析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.4、B【解析】
作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.5、B【解析】
由向量相等的充要条件可得:,列出方程组,即可求解,得到答案.【详解】由题意,向量,,,又因为,所以,所以,解得,故选B.【点睛】本题主要考查了平面向量的数乘运算及向量相等的充要条件,其中解答中熟记向量的共线条件,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】
根据等比中项可得,再根据,即可求出结果.【详解】由等比中项可知,,又,所以.故选:B.【点睛】本题主要考查了等比中项的性质,属于基础题.7、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.8、D【解析】试题分析:根据前n项和与其通项公式的关系式,an=当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2•3n-1.当n=1时,a1=1,不满足上式;所以an=,故答案为an=,选D.考点:本题主要考查数列的求和公式,解题时要根据实际情况注意公式的灵活运用,属于中档题点评:解决该试题的关键是借助公式an=,将前n项和与其通项公式联系起来得到其通项公式的值.9、D【解析】
设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【详解】设a=3k,b=4k,c=5k,所以cosC=故选D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.10、C【解析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.12、【解析】试题分析:两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.考点:三角恒等变换.13、【解析】
根据递推关系式,依次求得的值.【详解】由于,所以,.故答案为:【点睛】本小题主要考查根据递推关系式求数列某一项的值,属于基础题.14、【解析】
过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【详解】,,,,,,故答案:.【点睛】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.16、【解析】
根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以因为,所以(II)因为令,,所以,因为对称轴,根据二次函数性质知,当时,函数取得最大值.18、(1);(2).【解析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【点睛】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.19、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(1)添加辅助线,通过证明线线平行来证明线面平行.(2)通过证明线面垂直面,来证明面面.(Ⅰ)证明:如图,过点作于,连接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四边形为平行四边形.∴.∵平面,平面,∴平面.(Ⅱ)证明:面,,又四边形是菱形,,又,面,又面,从而面面.点晴:本题考查的是空间线面的平行和垂直关系.第一问要考查的是线面平行,通过先证明,得四边形为平行四边形.证得,可得平面,这里对于线面平行的条件平面,平面要写全;第二问中通过先证明面,再结合面,从而面面.20、(1)120;(2).【解析】
(1)参与调查的总人数为20000,其中从持“不支持”态度的人数5000中抽取了30人,由此能求出n.(2)总体的平均数为9,与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,由此能求出任取1个数与总体平均数之差的绝对值超过0.6的概率.【详解】(1)参与调查的总人数为8000+4000+2000+1000+2000+3000=20000,其中不支持态度的人数2000+3000=5000中抽取了30人,所以n=.(2)总体的平均数与总体平均数之差的绝对值超过0.6的数有8.2,8.3,9.7,所以任取一个数与总体平均数之差的绝对值超过0.6的概率.【点睛】本题主要考查了样本容量的求法,分层抽样,用列举法求古典概型的概率,属于中档题.21、(1)详证见解析;(2)详证见解析.【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度井盖专利技术许可与转让合同3篇
- 2025年度新型建材钢管租赁服务合同
- 二零二五年度家电产品销售合同协议范本3篇
- 2025年度二手房屋买卖居间服务合同范本全新升级版
- 2025年度预制构件装配式建筑项目风险评估与保险合同
- 二零二五年度跑步赛事场地设施租赁合同4篇
- 二零二五年度古建筑修缮泥工班组专业施工合同4篇
- 2025版民爆物品装卸作业应急救援预案合同3篇
- 2025年墙体改梁与装配式建筑技术应用合同3篇
- 2025版二零二五年度商铺租赁合同租赁物保险条款3篇
- 矿物加工工程基础知识单选题100道及答案解析
- 2024年同等学力申硕英语考试真题
- 世说新语原文及翻译-副本
- 消除“艾梅乙”医疗歧视-从我做起
- 非遗文化走进数字展厅+大数据与互联网系创业计划书
- 2024山西省文化旅游投资控股集团有限公司招聘笔试参考题库附带答案详解
- 科普知识进社区活动总结与反思
- 加油站廉洁培训课件
- 现金日记账模板(带公式)
- 消化内科专科监测指标汇总分析
- 深圳市物业专项维修资金管理系统操作手册(电子票据)
评论
0/150
提交评论