北京市丰台区2025届数学高一下期末考试试题含解析_第1页
北京市丰台区2025届数学高一下期末考试试题含解析_第2页
北京市丰台区2025届数学高一下期末考试试题含解析_第3页
北京市丰台区2025届数学高一下期末考试试题含解析_第4页
北京市丰台区2025届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市丰台区2025届数学高一下期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.2.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.33.如图,已知平行四边形,,则()A. B.C. D.4.已知向量,,若,则()A. B. C. D.5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏6.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.7.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或8.己知x与y之间的几组数据如下表:x0134y1469则y与x的线性回归直线y=A.(2,5) B.(5,9) C.(0,1) D.(1,4)9.在中,(,,分别为角、、的对边),则的形状为()A.等边三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形10.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则______,______.12.等差数列,的前项和分别为,,且,则______.13.记为等差数列的前项和,若,则___________.14.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.15.函数的图象过定点______.16.函数在的值域是______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为等差数列的前项和,已知,.(1)求数列的通项公式;(2)令,且数列的前项和为,求证:.18.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.19.已知边长为2的等边,是边的中点,以为旋转中心,逆时针旋转得对应,与所在直线交于.(1)任意旋转角,判断是否是定值.若是,求此定值;若不是,说明理由.(2)求的最小值.20.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.7821.已知函数,.(1)求函数的单调减区间;(2)若存在,使等式成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【点睛】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.2、A【解析】

根据等比数列奇数项也成等比数列,求解.【详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【点睛】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.3、A【解析】

根据平面向量的加法运算,即可得到本题答案.【详解】由题,得.故选:A【点睛】本题主要考查平面向量的加法运算,属基础题.4、D【解析】

由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.5、D【解析】

从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.6、C【解析】

根据圆的标准方程的形式写.【详解】圆心为,半径为2的圆的标准方程是.故选C.【点睛】本题考查了圆的标准方程,故选C.7、D【解析】

利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.8、A【解析】

分别求出x,y均值即得.【详解】x=0+1+3+44=2,故选A.【点睛】本题考查线性回归直线方程,线性回归直线一定过点(x9、B【解析】

利用二倍角公式,正弦定理,结合和差公式化简等式得到,得到答案.【详解】故答案选B【点睛】本题考查了正弦定理,和差公式,意在考查学生的综合应用能力.10、C【解析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考点:系统抽样.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.12、【解析】

取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.13、100【解析】

根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.14、2【解析】

由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.15、【解析】

令真数为,求出的值,代入函数解析式可得出定点坐标.【详解】令,得,当时,.因此,函数的图象过定点.故答案为:.【点睛】本题考查对数型函数图象过定点问题,一般利用真数为来求得,考查计算能力,属于基础题.16、【解析】

利用,即可得出.【详解】解:由已知,,又

故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)见解析【解析】

(1)根据等差数列的通项公式得到结果;(2)根据第一问得到,由裂项求和得到结果.【详解】(1)设等差数列的公差为,由题意得,,解得,,则,.(2)由得∴.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。18、(1);(2)【解析】

(1)由,可得:,再用正弦定理可得:,从而求得的值;(2)根据题意由韦达定理和余弦定理列出关于的方程求解即可.【详解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的两根,得,利用余弦定理得而,可得.【点睛】本题考查了三角形的正余弦定理的应用,化简与求值,属于基础题.19、(1)是,0;(2).【解析】

(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,得出的坐标,计算得出,进而得出;(2)根据得出点的轨迹是以为直径的圆,由圆的对称性得出的最小值.【详解】(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系则,即∴设,则所以为定值,定值为(2)由(1)知,故在以为直径的圆上设的中点,则,以为直径的圆的半径由圆的对称性可知,的最小值是.【点睛】本题主要考查了计算向量的数量积以及圆对称性的应用,属于中档题.20、(I)选择更适宜作为产卵数关于温度的回归方程类型;(II);(III)要使得产卵数不超过50,则温度控制在以下.【解析】

(I)由于散点图类似指数函数的图像,由此选择.(II)对;两边取以为底底而得对数,将非线性回归的问题转化为线性回归的问题,利用回归直线方程的计算公式计算出回归直线方程,进而化简为回归曲线方程.(III)令,解指数不等式求得温度的控制范围.【详解】(I)依散点图可知,选择更适宜作为产卵数关于温度的回归方程类型。(II)因为,令,所以与可看成线性回归,,所以,所以,即,(III)由即,解得,要使得产卵数不超过50,则温度控制在以下。【点睛】本小题主要考查散点图的判断,考查非线性回归的求解方法,考查线性归回直线方程的计算公式,考查了利用回归方程进行预测.属于中档题.解题的关键点有两个,首先是根据散点图选择出恰当的回归方程,其次是要将非线性回归的问题,转化为线性回归来求解.21、(1),.(2)【解析】

(1)利用降次公式和辅助角公式化简表达式,根据三角函数单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论