




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省丰城市第九中学2025届高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法2.若,则的大小关系为A. B. C. D.3.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.44.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥5.等差数列中,则()A.8 B.6 C.4 D.36.如图,在长方体中,,,,分别是,的中点则异面直线与所成角的余弦值为()A. B. C. D.7.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.8.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或9.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.010.已知向量,,若,,则的最大值为()A. B. C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.12.等差数列,的前项和分别为,,且,则______.13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.15.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-516.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.18.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?19.已知函数.(1)证明函数在定义域上单调递增;(2)求函数的值域;(3)令,讨论函数零点的个数.20.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,若数列的前项和为,求证:.21.数列满足:.(1)求证:为等比数列;(2)求的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【点睛】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.2、A【解析】
利用作差比较法判断得解.【详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【点睛】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解析】
过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.4、B【解析】
直接由三视图还原原几何体得答案.【详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【点睛】本题考查三视图,关键是由三视图还原原几何体,属于基础题.5、D【解析】
设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】
连结,由,可知异面直线与所成角是,分别求出,然后利用余弦定理可求出答案.【详解】连结,因为,所以异面直线与所成角是,在中,,,,所以.故选A.【点睛】本题考查了异面直线的夹角,考查了利用余弦定理求角,考查了计算能力,属于中档题.7、A【解析】
设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.8、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.9、C【解析】
根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.10、A【解析】
设,由可得点的轨迹方程,再对两边平方,利用一元二次函数的性质求出最大值,即可得答案.【详解】设,,∵,∴,整理得:.∵,∴,当时,的最大值为,∴的最大值为.故选:A.【点睛】本题考查向量模的最值、模的坐标运算、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以.考点:向量坐标运算.12、【解析】
取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.13、3【解析】
根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.14、-0.1【解析】
分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.15、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.16、【解析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.18、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.19、(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点【解析】
(1)求出函数定义域后直接用定义法即可证明;(2)由题意得,对两边同时平方得,求出的取值范围即可得解;(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.【详解】(1)证明:令,解得,故函数的定义域为令,由,可得,所以,,故即,所以函数在定义域上单调递增.(2)由,,故,,当时,,有,可得:,故,由,可得,故函数的值域为,(3)由(2)知,则,令,则,令,①当时,,此时函数没有零点,故函数也没有零点;②当时,二次函数的对称轴为,则函数在区间单调递增,而,,故函数有一个零点,又由函数单调递增,可得函数也只有一个零点;③当时,,二次函数开口向下,对称轴,又,,此时函数没有零点,故函数也没有零点.综上,当时,函数没有零点;当时,函数有且仅有一个零点.【点睛】本题考查了函数单调性的证明、值域的求解和零点问题,考查了转化化归思想和分类讨论思想,属于中档题.20、(1)(2)见解析【解析】
(1)先利用时,由求出的值,再令,由,得出,将两式相减得出数列为等比数列,得出该数列的公比,可求出;(2)利用对数的运算性质以及等差数列的求和公式得出,并将裂项为,利用裂项法求出,于此可证明出所证不等式成立.【详解】(1)由题可得.当时,,即.由题设,,两式相减得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏护理职业学院《汇编与接口技术》2023-2024学年第二学期期末试卷
- 塔里木大学《材料科学与工程专业导论》2023-2024学年第二学期期末试卷
- 江苏省苏州市昆山市、太仓市2025年初三5月热身考试英语试题含答案
- 六盘水市重点中学2025年高三下学期摸底(期末)考试英语试题含解析
- 内蒙古能源职业学院《学术与实务讲座A》2023-2024学年第二学期期末试卷
- 辽宁省大连市第七十六中学2025届初三第一次五校联考自选模块试卷含解析
- 盐城工学院《古代文学Ⅱ(4)》2023-2024学年第一学期期末试卷
- 宁夏回族固原市原州区2025届小升初数学重难点模拟卷含解析
- 顺德市李兆基中学高三月月考英语试题
- 邯郸市高二上学期期中考试化学试题
- 2025年全民国家安全教育日(4.15)知识测试竞赛题库(含答案)
- 2025-2030中国煤化工行业发展分析及投资风险与战略研究报告
- 四川自贡九鼎大楼“7·17”重大火灾事故调查报告学习警示教育
- 小学生国家安全教育日学习课件
- 2025标准金融服务合同范本
- 农业环境与可持续发展试题及答案
- 洗涤机械生产过程质量控制考核试卷
- 2025年中国安防视频监控镜头市场竞争态势及投资方向研究报告
- 电信行业用户欠费催收策略与措施
- 银行资格考试分析与策略试题及答案
- 多式联运风险管理与优化-全面剖析
评论
0/150
提交评论