版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江市2024年数学高一下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.2.已知,,O是坐标原点,则()A. B. C. D.3.已知,,,,则下列等式一定成立的是()A. B. C. D.4.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.5.设全集,集合,,则()A. B. C. D.6.已知点,则向量()A. B. C. D.7.若点共线,则的值为()A. B. C. D.8.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.9.集合,,则()A. B.C. D.10.用数学归纳法证明n+1n+2⋯n+n=-2A.2k+1 B.22k+1 C.2k+1k+1二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.13.已知,均为锐角,,,则______.14.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.15.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.16.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.18.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面积S=,且b>c,求b,c.19.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.20.解方程:.21.已知不经过原点的直线在两坐标轴上的截距相等,且点在直线上.(1)求直线的方程;(2)过点作直线,若直线,与轴围成的三角形的面积为2,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.2、D【解析】
根据向量线性运算可得,由坐标可得结果.【详解】故选:【点睛】本题考查平面向量的线性运算,属于基础题.3、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.4、D【解析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.5、D【解析】
先求得集合的补集,然后求其与集合的交集,由此得出正确选项.【详解】依题意,所以,故选D.【点睛】本小题主要考查集合补集、交集的概念和运算,属于基础题.6、D【解析】
利用终点的坐标减去起点的坐标,即可得到向量的坐标.【详解】∵点,,∴向量,,.故选:D.【点睛】本题考查向量的坐标表示,考查运算求解能力,属于基础题.7、A【解析】
通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.8、B【解析】
根据条件可得,,,然后进行数量积的运算即可.【详解】根据条件,,,,当时,取最小值.故选:B【点睛】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.9、B【解析】
求出中不等式的解集确定出,找出与的交集即可.【详解】解:由中不等式变形得:,解得:,即,,,故选:.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.10、B【解析】
要分清起止项,以及相邻两项的关系,由此即可分清增加的代数式。【详解】当n=k时,左边=k+1当n=k+1时,左边====k+1∴从k到k+1,左边需要增乘的代数式为22k+1【点睛】本题主要考查学生如何理解数学归纳法中的递推关系。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求,再代入求值得解.【详解】由题得所以.故答案为【点睛】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.12、【解析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.13、【解析】
先求出,,再由,并结合两角和与差的正弦公式求解即可.【详解】由题意,可知,则,又,则,或者,因为为锐角,所以不成立,即成立,所以.故.故答案为:.【点睛】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.14、【解析】
利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【点睛】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.15、0.72【解析】
根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.16、①②④【解析】
依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.18、(1);(2).【解析】试题分析:(1)根据已知条件及余弦定理可求得的值,再由同角三角函数基本关系式可求得的值.因为,所以,由两角和的正弦公式可将其化简变形,可求得与的关系式,从而可得.(2)根据余弦定理和三角形面积均可得的关系式.从而可解得的值.试题解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴联立①②可得.考点:1正弦定理;2余弦定理;3两角和差公式.19、或【解析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;2、由向量的数量积的性质有,,,因此利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题;3、本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立的方程.20、或或【解析】
由倍角公式可将题目中的方程变形解出来【详解】因为所以或由得由得所以所以或所以或综上:或或【点睛】,我们在解题的时候要灵活选择.21、(1);(2)或.【解析】
(1)根据直线在两坐标轴上的截距相等列出直线方程,然后代入点即可求出直线方程;(2)首先根据直线过点设出直线方程,然后列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025车辆贷款抵押合同范本
- 二零二五年度大米市场调研与分析服务合同3篇
- 2025二手设备采购合同范本
- 2025年度建筑公司合同制员工劳动合同(综合保障)3篇
- 二零二五年度公路货物运输合同风险控制与应急处理协议3篇
- 2025生猪养殖场租赁合同
- 2025年度文化产业公司高层管理人员聘用合同2篇
- 2025年度水产养殖资源保护合伙合同3篇
- 二零二五年度电力行业劳务输出及输电线路维护服务合同3篇
- 2025年度国有土地租赁协议合同(生态旅游度假区)3篇
- 2014年七年级上期末考试数学试题及答案
- 初中数学问题情境创设论文
- 塑料注塑模具中英文对照外文翻译文献
- 中国旅游地理(第七版)第11章石林洞乡-西南少数民族农业文化旅游区
- 新教材浙教版八年级上册初中数学全册教案(教学设计)
- 医疗器械的检查与包装讲解课件
- 高频焊接操作技术规范
- GB_T4897-2015刨花板(高清版)
- 公路工程竣工验收办法
- 毕业设计(论文)安徽汽车产业的现状分析及发展战略研究
- 帆软BIFineBI技术白皮书
评论
0/150
提交评论