北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题含解析_第1页
北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题含解析_第2页
北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题含解析_第3页
北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题含解析_第4页
北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市延庆区市级名校2023-2024学年高一下数学期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.242.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法3.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°4.已知,,且,则在方向上的投影为()A. B. C. D.5.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第20项为()A.200 B.180 C.128 D.1626.若,,则与向量同向的单位向量是()A. B. C. D.7.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是()A.1 B. C. D.8.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.9.函数图像的一条对称轴方程为()A. B. C. D.10.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.12.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____13.已知等比数列、、、满足,,,则的取值范围为__________.14.已知直线与圆相交于,两点,则=______.15.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是.16.若,点的坐标为,则点的坐标为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)18.在等差数列中,为其前项和(),且,.(1)求数列的通项公式;(2)设,数列的前项为,证明:19.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.20.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.21.如图,为了测量河对岸、两点的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、.并测量得到以下数据,,,,,米,米.求、两点的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.2、B【解析】

此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.

故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.3、D【解析】

首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【点睛】本题考查直线斜率与倾斜角的关系,属于基础题.4、C【解析】

通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.5、A【解析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,即可得出.【详解】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,则此数列第20项=2×102=1.故选:A.【点睛】本题考查了数列递推关系、通项公式、归纳法,属于基础题.6、A【解析】

先求出的坐标,然后即可算出【详解】因为,所以所以与向量同向的单位向量是故选:A【点睛】本题考查的是向量的坐标运算,属于基础题7、D【解析】由图象性质可知,,解得,故选D。8、C【解析】

将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.9、B【解析】

对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。10、A【解析】

一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【点睛】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)【解析】

利用线线平行的传递性、线面垂直的判定定理判定.【详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【点睛】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.12、【解析】

利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【点睛】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.13、【解析】

设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.14、.【解析】

将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.15、【解析】

,,是平面内两个相互垂直的单位向量,∴,∴,,,为与的夹角,∵是平面内两个相互垂直的单位向量∴,即,所以当时,即与共线时,取得最大值为,故答案为.16、【解析】试题分析:设,则有,所以,解得,所以.考点:平面向量的坐标运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、乙船应朝北偏东约的方向沿直线前往处救援.【解析】

根据题意,求得,利用余弦定理求得的长,在中利用正弦定理求得,根据题目所给参考数据求得乙船行驶方向.【详解】解:由已知,则,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,则,故乙船应朝北偏东约的方向沿直线前往处救援.【点睛】本小题主要考查解三角形在实际生活中的应用,考查正弦定理、余弦定理解三角形,属于基础题.18、(1);(2)见解析【解析】

(1)运用等差数列的通项公式和求和公式,解方程组,可得首项和公差,即可得到所求通项;(2)化简,再利用裂项相消求数列的和,化简整理,即可证得.【详解】(1)设等差数列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因为,则成立.【点睛】本题考查等差数列的通项公式的求法,也考查了裂项相消求和求数列的和,考查化简整理的运算能力,属于中档题.19、(1).(2)【解析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.20、(1);(2)存在,.【解析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【点睛】本题考查了数列通项的求法,以及不等式恒成立的问题,不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论