2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题含解析_第1页
2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题含解析_第2页
2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题含解析_第3页
2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题含解析_第4页
2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省罗源第二中学、连江二中高一下数学期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.在等差数列中,,则的值()A. B. C. D.3.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.4.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.45.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.6.已知则的值为()A. B. C. D.7.在中,,.若点满足,则()A. B. C. D.8.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.499.已知等比数列an的公比为q,且q<1,数列bn满足bn=anA.-23 B.23 C.10.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.2二、填空题:本大题共6小题,每小题5分,共30分。11.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.12.已知角的终边经过点,则的值为__________.13.若两个向量与的夹角为,则称向量“”为向量的“外积”,其长度为.若已知,,,则.14.函数的单调递减区间为______.15.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………16.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?18.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.19.已知数列,.(1)记,证明:是等比数列;(2)当是奇数时,证明:;(3)证明:.20.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.21.已知向量,,.(1)若,求的值;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.2、B【解析】

根据等差数列的性质,求得,再由,即可求解.【详解】根据等差数列的性质,可得,即,则,故选B.【点睛】本题主要考查了等差数列的性质,以及特殊角的三角函数值的计算,着重考查了推理与运算能力,属于基础题.3、D【解析】

首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.4、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.5、B【解析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.6、B【解析】

直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.7、A【解析】

试题分析:,故选A.8、B【解析】

模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.9、A【解析】

由题可知数列{an}【详解】因为数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以数列{an}有连续四项在集合{-27,-18,-12,8,18,24}中,所以数列{an}的连续四项不同号,即【点睛】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.10、C【解析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.12、【解析】按三角函数的定义,有.13、3【解析】

故答案为3.【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,14、【解析】

利用二倍角降幂公式和辅助角公式可得出,然后解不等式,即可得出函数的单调递减区间.【详解】,解不等式,得,因此,函数的单调递减区间为.故答案为:.【点睛】本题考查正弦型三角函数单调区间的求解,一般利用三角恒等变换思想将三角函数解析式化简,考查计算能力,属于中等题.15、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.16、【解析】

利用三角函数的定义可求出的值.【详解】由三角函数的定义可得,故答案为.【点睛】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.15(2)2400(3)25人【解析】

(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因为,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18、(1)(2)【解析】

(1)由题意求得所在直线的斜率再由直线方程点斜式求的方程,然后利用点到直线的距离公式求解;(2)设的坐标,由题意列式求得的坐标,再求出,代入三角形面积公式求解.【详解】(1)由题意,,直线的方程为,即.点到直线的距离;(2)设,则的中点坐标为,则,解得,即,.的面积.【点睛】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题.19、(1)见解析;(2)见解析;(3)见解析【解析】

(1)对递推关系进行变形得,从而证明是等比数列;(2)由(1)得,代入所证式子,再利用放缩法进行证明;(3)由(2)可知,对分偶数和奇数计论,放缩法和等比数列求和,即可证明结论.【详解】(1)∵,∴,且所以,数列是首项为,公比为3的等比数列.(2)由(1)可知当k是奇数时,(3)由(2)可知,当为偶数时,当为奇数时,所以.【点睛】本题考查等比数列的定义证明、等比数列前项和、不等式的放缩法证明,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的突破口.20、(1)周期,值域为;(2).【解析】

(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【点睛】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论