黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题含解析_第1页
黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题含解析_第2页
黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题含解析_第3页
黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题含解析_第4页
黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江七台河市2024年数学高一下期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,则的取值范围是()A. B. C. D.2.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.3.己知某三棱锥的三视图如图所示,其中正视图和侧视图都是边长为2的等边三角形,则该三棱锥的体积为()A. B. C. D.4.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.505.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.06.在锐角中,内角,,的对边分别为,,,,,成等差数列,,则的周长的取值范围为()A. B. C. D.7.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁8.已知各项均为正数的数列的前项和为,且若对任意的,恒成立,则实数的取值范围为()A. B. C. D.9.在中,为线段上的一点,,且,则A., B.,C., D.,10.函数的图象可能是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线x-312.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.13.已知,则的值为______14.对于任意实数x,不等式恒成立,则实数a的取值范围是______15.函数的最大值为.16.不等式的解集为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知内角的对边分别是,若,,.(1)求;(2)求的面积.18.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?19.学生会有共名同学,其中名男生名女生,现从中随机选出名代表发言.求:同学被选中的概率;至少有名女同学被选中的概率.20.已知(Ⅰ)求的值;(Ⅱ)若,求的值.21.已知向量与不共线,且,.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【点睛】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.2、B【解析】

利用直线斜率与倾斜角的关系即可求解.【详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【点睛】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.3、B【解析】

先找到三视图对应的几何体原图,再求几何体的体积.【详解】由题得三视图对应的几何体原图是如图所示的三棱锥A-BCD,所以几何体的体积为.故选B【点睛】本题主要考查三视图找到几何体原图,考查三棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.4、B【解析】

求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.5、B【解析】

两直线平行表示斜率相同或者都垂直x轴,即。【详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【点睛】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。6、A【解析】

依题意求出,由正弦定理可得,再根据角的范围,可求出的范围,即可求得的周长的取值范围.【详解】依题可知,,由,可得,所以,即,而.∴,即.故的周长的取值范围为.故选:A.【点睛】本题主要考查正弦定理在解三角形中的应用,两角和与差的正弦公式的应用,以及三角函数的值域求法的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7、C【解析】

甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.8、C【解析】

由得到an=n,任意的,恒成立等价于,利用作差法求出的最小值即可.【详解】当n=1时,,又∴∵an+12=2Sn+n+1,∴当n≥2时,an2=2Sn﹣1+n,两式相减可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵数列{an}是各项均为正数的数列,∴an+1=an+1,即an+1﹣an=1,显然n=1时,适合上式∴数列{an}是等差数列,首项为1,公差为1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立记,,∴为单调增数列,即的最小值为∴,即故选C【点睛】已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.9、A【解析】

根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值【详解】由题意,∵,∴,即,∴,即故选A.【点睛】本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.10、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.二、填空题:本大题共6小题,每小题5分,共30分。11、π【解析】

将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【详解】因为x-3所以y=33x-33则tanα=33,α=【点睛】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.12、【解析】

首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.13、【解析】

根据两角差的正弦公式,化简,解出的值,再平方,即可求解.【详解】由题意,可知,,平方可得则故答案为:【点睛】本题考查三角函数常用公式关系转换,属于基础题.14、【解析】

对a分类讨论,利用判别式,即可得到结论.【详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【点睛】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.15、【解析】略16、【解析】

将三阶矩阵化为普通运算,利用指数函数的性质即可求出不等式的解集.【详解】不等式化为,整理得,,,即,,即不等式的解集为故答案为:【点睛】此题考查了其他不等式的解法,指数函数的性质,以及三阶矩阵,是一道中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18、(1)(2)是数列中的第项【解析】

(1)直接利用等差数列的公式计算得到通项公式.(2)将3998代入通项公式,是否有整数解.【详解】(1)设数列的公差为,由题意有,解得则数列的通项公式为,(2)假设是数列中的项,有,得,故是数列中的第项【点睛】本题考查了等差数列的公式,属于简单题.19、(1)(2)【解析】

(1)用列举法列出所有基本事件,得到基本事件的总数和同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得.【详解】解:选两名代表发言一共有,,共种情况,其中.被选中的情况是共种.所以被选中的概本为.不妨设四位同学为男同学,则没有女同学被选中的情况是:共种,则至少有一名女同学被选中的概率为.【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用两角和与差的正弦公式将已知两式展开,分别作和、作差可得,,再利用,即可求出结果;(Ⅱ)由已知求得,再由,利用两角差的余弦公式展开求解,即可求出结果.【详解】解:(I)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论