河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题含解析_第1页
河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题含解析_第2页
河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题含解析_第3页
河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题含解析_第4页
河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省两校2023-2024学年高一数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.2.已知实数满足且,则下列选项中不一定成立的是()A. B. C. D.3.已知等比数列的首项,公比,则()A. B. C. D.4.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.5.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,记此数列为,则()A.1 B.2 C.4 D.86.设为等比数列的前n项和,若,,成等差数列,则()A.,,成等差数列 B.,,成等比数列C.,,成等差数列 D.,,成等比数列7.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.8.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品9.如图,在平面直角坐标系xOy中,角α0≤α≤π的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转π2至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数A. B.C. D.10.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.12.方程的解集是__________.13.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.14.若,则的值为_______.15.已知,则____.16.设等比数列满足a1+a2=–1,a1–a3=–3,则a4=___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于x的不等式18.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.19.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.20.已知方程,.(1)若是它的一个根,求的值;(2)若,求满足方程的所有虚数的和.21.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.2、D【解析】

由题设条件可以得到,从而可判断A,B中的不等式都是正确的,再把题设变形后可得,从而C中的不等式也是成立的,当,D中的不等式不成立,而时,它又是成立的,故可得正确选项.【详解】因为且,故,所以,故A正确;又,故,故B正确;而,故,故C正确;当时,,当时,有,故不一定成立,综上,选D.【点睛】本题考查不等式的性质,属于基础题.3、B【解析】

由等比数列的通项公式可得出.【详解】解:由已知得,故选:B.【点睛】本题考查等比数列的通项公式的应用,是基础题.4、D【解析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【详解】由,可得中点又本题正确选项:【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.5、C【解析】

将数列分组:第1组为,第2组为,第3组为,,根据,进而得到数列的2017项为,数列的第2018项为,数列的第2019项为,即可求解.【详解】将所给的数列分组:第1组为,第2组为,第3组为,,则数列的前n组共有项,又由,所以数列的前63组共有2016项,所以数列的2017项为,数列的第2018项为,数列的第2019项为,所以故选:C.【点睛】本题主要考查了等差数列的前n项和公式的应用,其中解答中根据所给数列合理分组,结合等差数列的前n项和求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、A【解析】

先说明不符合题意,由时,成等差数列,算得,然后用表示出来,即可得到本题答案.【详解】设等比数列的公比为q,首项为,当时,有,不满足成等差数列;当时,因为成等差数列,所以,即,化简得,解得,所以,,,则成等差数列.故选:A【点睛】本题主要考查等差数列与等比数列的综合应用,计算出等比数列的公比是关键,考查计算能力,属于中等题.7、D【解析】

首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.8、B【解析】

根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.9、B【解析】BQ=|y点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.10、D【解析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.12、【解析】

令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.13、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)14、【解析】

把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.15、【解析】

由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.16、-8【解析】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.18、(I);(II)见解析;(III)的最大值为1【解析】

(I)直接令中的n=1即得的值;(II)由题得时,,化简即得证;(III)用累加法可得:,再利用项和公式求得,再求的范围得解.【详解】(I)(II)因为,所以时,,化简得:;(III)因为,用累加法可得:,由,得,当时,上式也成立,因为,则,所以是单调递减数列,所以,又因为,所以,即,的最大值为1.【点睛】本题主要考查项和公式求数列的通项,考查数列的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)(2)【解析】

(1)代入条件化简得,再由同角三角函数基本关系求出;(2)利用余弦定理、,把表示成关于的二次函数.【详解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范围为.【点睛】对于运动变化问题,常用函数与方程的思想进行研究,所以自然而然想到构造以是关于或的函数.20、(1);(2)190.【解析】

(1)先设出的代数形式,把代入所给的方程,化简后由实部和虚部对应相等进行求值;(2)由方程由虚根的条件,求出的所有的取值,再由方程虚根成对出现的特点,求出所有虚根之和.【详解】解:(1)设,是的一个根,,,,解得,,,(2)方程有虚根,,解得,,,2,,又虚根是成对出现的,所有的虚根之和为.【点睛】本题是复数的综合题,考查了复数相等条件的应用,方程有虚根的等价条件,以及方程中虚根的特点,属于中档题.21、(1)(2)或(3)直线RS恒过定点【解析】

(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论