版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山西省晋中市祁县一中高一下数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.2.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.3.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.4.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.755.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列6.已知函数f:R+→R+满足:对任意三个正数x,y,z,均有f().设a,b,c是互不相等的三个正数,则下列结论正确的是()A.若a,b,c是等差数列,则f(a),f(b),f(c)一定是等差数列B.若a,b,c是等差数列,则f(),f(),f()一定是等差数列C.若a,b,c是等比数列,则f(a),f(b),f(c)一定是等比数列D.若a,b,c是等比数列,则f(),f(),f()一定是等比数列7.若点在圆外,则a的取值范围是()A. B. C. D.或8.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.19009.若不等式对一切恒成立,则实数的最大值为()A.0 B.2 C. D.310.()A.4 B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.12..已知,若是以点O为直角顶点的等腰直角三角形,则的面积为.13.382与1337的最大公约数是__________.14.已知扇形的圆心角为,半径为5,则扇形的弧长_________.15.已知角的终边经过点,若,则______.16.已知正数、满足,则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,角、、所对的边分别为、、,且.(1)求的值;(2)若,求的最大值;(3)若,,为的中点,求线段的长度.18.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.19.在四棱锥中,底面,,,,,点为棱的中点.(1)求证:;(2)求直线与平面所成角的正弦值.20.在中,求的值.21.如图,在平面四边形中,,,的面积为.⑴求的长;⑵若,,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,,,故选A.2、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.3、D【解析】
画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.4、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.5、C【解析】
判断等比数列,可根据为常数来判断.【详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【点睛】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.6、B【解析】
令,,,若是等差数列,计算得,进而可得结论.【详解】由题意,,令,,,若是等差数列,则所以,即,故,,成等差数列.若是等比数列,,,与,,既不能成等差数列又不等成等比数列.故选:B.【点睛】本题考查抽象函数的解析式,等差数列的等差中项的性质,属于中档题.7、C【解析】
先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内8、B【解析】
根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9、C【解析】
采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).10、A【解析】
分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.12、4【解析】由得;由是以为直角顶点的等腰直角三角形,则,.由得.又,则,所以又,则,则,所以所以;则则的面积为13、191【解析】
利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.14、【解析】
根据扇形的弧长公式进行求解即可.【详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【点睛】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.15、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.16、【解析】
直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:【点睛】本题考查了均值不等式,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)由三角恒等变换的公式,化简,代入即可求解.(2)在中,由余弦定理,结合基本不等式,求得,即可得到答案.(3)设,在中,由余弦定理,求得,分别在和中,利用余弦定理,列出方程,即可求解.【详解】(1)由题意,在中,,则又由.(2)在中,由余弦定理可得,即,可得,当且仅当等号成立,所以的最大值为.(3)设,如图所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因为,所以,由①+②,可得,即,解得,即.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.18、(1)(2)【解析】试题分析:(1)将已知条件转化为首项和公差表示,解方程组可求得基本量的值,从而确定通项公式;(2)首先化简数列的通项公式,结合特点采用分组求和法求解试题解析:(1)∵数列是等差数列,是其前项和,.∴,解得,∴.(2)∵,考点:数列求通项公式及数列求和19、(1)证明见解析;(2)【解析】
(1)取中点,连接,可得四边形为平行四边形.再证明平面得到,进而得到即可.(2)利用等体积法,求出三棱锥的体积,进而求得到平面的距离,再得出直线与平面所成角的正弦值即可.【详解】(1)取中点,连接,则.又,故.故四边形为平行四边形.故.又,故,又底面,平面,故.又,,故,又,故平面.又平面,故.又,,故(2)因为底面,故.又,,.故.设到平面的距离为,则,解得.故直线与平面所成角的正弦值为【点睛】本题主要考查了线线垂直的证明以及利用等体积法求点到面的距离以及线面角的求解,需要根据题意利用线面线线垂直的判定与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北邢台地区2023-2024学年上学期期末考试九年级理综试卷-初中化学
- 领导家电行业的品牌发展计划
- 2025年河南省八省联考高考地理模拟试卷
- 2022年安徽省安庆市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年河南省平顶山市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年湖南省岳阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年山西省朔州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 英文商务邀请函范本
- 福建省宁德市(2024年-2025年小学六年级语文)部编版阶段练习(上学期)试卷及答案
- 2024年免疫抗疲劳保健品项目项目投资申请报告代可行性研究报告
- 2023年中职《计算机网络技术》秋季学期期末考试试卷(附答案)
- 法治副校长进校园教育
- 北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 2025版寒假特色作业
- 江西省吉安市2023-2024学年高一上学期1月期末考试政治试题(解析版)
- 广东省公务员考试笔试真题及答案
- 花键强度校核程序
- 毗尼日用切要20140619最终版
- 出库单样本12623
- 塔吊附墙加节顶升安全技术交底
- 一次风机动叶调节装置故障原因分析及处理
评论
0/150
提交评论