版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省惠州市第三中学高一下数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值为()A. B. C. D.2.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.333.在正项等比数列中,,数列的前项之和为()A. B. C. D.4.已知的三边满足,则的内角C为()A. B. C. D.5.在公比q为整数的等比数列{an}中,Sn是数列{an}A.q=2 B.数列SnC.S8=510 D.数列6.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.7.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.8.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.9.矩形中,,若在该矩形内随机投一点,那么使得的面积不大于3的概率是()A. B. C. D.10.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为________.12.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____13.若数列满足,,则数列的通项公式______.14.已知变量和线性相关,其一组观测数据为,由最小二乘法求得回归直线方程为.若已知,则______.15.在中,角所对的边为,若,且的外接圆半径为,则________.16.设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的单调增区间为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.18.已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值和f(x)的单调递增区间;(Ⅱ)若关于x的方程f(x)﹣m=0在区间[0,]上有两个实数解,求实数m的取值范围.19.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.20.设数列满足,.(1)求数列的通项公式;(2)令,求数列的前项和.21.已知.(1)当时,解不等式;(2)若,解关于x的不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据对数运算可求得且,,利用基本不等式可求得最小值.【详解】由得:且,(当且仅当时取等号)本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.2、A【解析】
根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.3、B【解析】
根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。4、C【解析】原式可化为,又,则C=,故选C.5、D【解析】
由等比数列的公比q为整数,得到a2<a3,再由等比数列的性质得出a1a4=a【详解】由等比数列的公比q为整数,得到a2由等比数列的性质得出a1a4=a2aSn=a11-qnS8=2所以,数列lgan是以故选:D.【点睛】本题考查等比数列基本性质的应用,考查等比数列求和以及等比数列的定义,充分利用等比数列下标相关的性质,将项的积进行转化,能起到简化计算的作用,考查计算能力,属于中等题。6、D【解析】
找出直线与PQ相交的两种临界情况,求斜率即可.【详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【点睛】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.7、D【解析】
古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.8、B【解析】
由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.9、C【解析】
先求出的点的轨迹(一条直线),然后由面积公式可知时点所在区域,计算其面积,利用几何概型概率公式计算概率.【详解】设到的距离为,,则,如图,设,则点在矩形内,,,∴所求概率为.故选C.【点睛】本题考查几何概型概率.解题关键是确定符合条件点所在区域及其面积.10、C【解析】
试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用反三角函数的单调性即可求解.【详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【点睛】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.12、【解析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【点睛】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.13、【解析】
在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【点睛】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.14、355【解析】
根据回归直线必过样本点的中心,根据横坐标结合回归方程求出纵坐标即可得解.【详解】由题:,回归直线方程为,所以,.故答案为:355【点睛】此题考查根据回归直线方程求样本点的中心的纵坐标,关键在于掌握回归直线必过样本点的中心,根据平均数求解.15、或.【解析】
利用正弦定理求出的值,结合角的取值范围得出角的值.【详解】由正弦定理可得,所以,,,或,故答案为或.【点睛】本题考查正弦定理的应用,在利用正弦值求角时,除了找出锐角还要注意相应的补角是否满足题意,考查计算能力,属于基础题.16、【解析】
设,,由求出的关系,用表示,并把代入即得,后利用余弦函数的单调性可得增区间.【详解】设,,由得:,∴,,∵,∴,,即,令,得,∴增区间为.故答案为:.【点睛】本题考查新定义,正确理解新定义运算是解题关键.考查三角函数的单调性.利用新定义建立新老图象间点的联系,求出新函数的解析式,结合余弦函数性质求得增区间.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)先由正弦定理求得与的关系,然后结合已知等式求得的值,从而求得的值;(2)先由余弦定理求得的值,从而由的范围取舍的值,进而由面积公式求解.试题解析:(1)在中,由正弦定理,得,即.又因为,所以.因为为锐角三角形,所以.(2)在中,由余弦定理,得,即.解得或.当时,因为,所以角为钝角,不符合题意,舍去.当时,因为,又,所以为锐角三角形,符合题意.所以的面积.考点:1、正余弦定理;2、三角形面积公式.18、(Ⅰ),函数的增区间为.(Ⅱ)【解析】
(Ⅰ)利用三角函数恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性,即可求得结论;(Ⅱ)由题意,函数的图象和直线在区间上有两个不同的交点,利用正弦函数的定义域和值域,以及正弦函数的图象特征,即可求解的取值范围.【详解】(Ⅰ)由题意,函数所以函数的最小正周期为,∴,即.令,求得,可得函数的增区间为.(Ⅱ)在区间上,则,则,即,关于x的方程在区间上有两个实数解,则的图象和直线在区间上有两个不同的交点,则.【点睛】本题主要考查了三角恒等变换,以及正弦型函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质,以及把关于x的方程在区间上有两个实数解,转化为两个函数图象的交点个数是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.19、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本题答案;(2)由四边形ABCD的面积=,得四边形ABCD的面积,求S的最大值即可得到本题答案.【详解】(1)当时,在中,由余弦定理得,设(),则,即,解得,所以;(2)的面积为,在中,由余弦定理得,所以,的面积为,所以,四边形的面积为,因为,所以当时,四边形的面积最大,最大值为.【点睛】本题主要考查利用余弦定理、面积公式及三角函数的性质解决实际问题.20、【解析】试题分析:(1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1)由已知,当时,==,.而,所以数列的通项公式为.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦虑抑郁症的临床护理
- 宫缩乏力的健康宣教
- 创伤性肘关节炎的健康宣教
- 慢性蝶窦炎的健康宣教
- JJF(黔) 82-2024 光柱式血压计校准规范
- 《数学家的生日蛋糕》课件
- 学期班级教学计划活动任务工作安排
- 2024-2025学年年七年级数学人教版下册专题整合复习卷第28章 锐角三角函数 数学活动(含答案)
- 鱼塘工程施工合同三篇
- 职场变革应对指南计划
- 安徽省蚌埠市联考2024-2025学年七年级上学期12月期末考试英语试题(无答案)
- 《SYT6848-2023地下储气库设计规范》
- 2024至2030年中国甲醚化氨基树脂行业投资前景及策略咨询研究报告
- 行政案例分析-第二次形成性考核-国开(SC)-参考资料
- 2024-2025学年人教版八年级上学期数学期末复习试题(含答案)
- “感恩老师”教师节主题班会教案【三篇】
- 扬尘防治(治理)监理实施细则(范本)
- 危险化学品经营单位主要负责人考试练习题(含答案)
- 2024年广西安全员A证考试题库
- 高等数学教程 上册 第4版 测试题及答案 共4套
- 太阳能路灯维护与保养方案
评论
0/150
提交评论