山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题含解析_第1页
山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题含解析_第2页
山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题含解析_第3页
山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题含解析_第4页
山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市济南第一中学2023-2024学年高一下数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形2.甲.乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度.跑步速度均相同,则()A.甲先到教室 B.乙先到教室C.两人同时到教室 D.谁先到教室不确定3.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.4.已知,,,则的最小值为()A. B. C.7 D.95.若,则下列正确的是()A. B.C. D.6.下列函数中,最小值为2的函数是()A. B.C. D.7.设为实数,且,则下列不等式成立的是()A. B. C. D.8.已知为锐角,,则()A. B. C. D.9.函数的定义域是().A. B. C. D.10.若函数有零点,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列中首项,公比,则______.12.已知,则________.13.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).14.设在的内部,且,的面积与的面积之比为______.15.在空间直角坐标系中,点关于原点的对称点的坐标为__________.16.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.18.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.19.某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组5第2组①第3组30②第4组20第5组10(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.20.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.21.已知函数,且.(1)求的值;(2)求的最小正周期及单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.2、B【解析】

设两人步行,跑步的速度分别为,().图书馆到教室的路程为,再分别表示甲乙的时间,作商比较即可.【详解】设两人步行、跑步的速度分别为,().图书馆到教室的路程为.则甲所用的时间为:.乙所用的时间,满足+,解得.则===1.∴.故乙先到教室.故选:B.【点睛】本题考查了路程与速度、时间的关系、基本不等式的性质,属于基础题.3、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.4、B【解析】

根据条件可知,,,从而得出,这样便可得出的最小值.【详解】;,且,;;,当且仅当时等号成立;;的最小值为.故选:.【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.5、D【解析】

由不等式的性质对四个选项逐一判断,即可得出正确选项,错误的选项可以采用特值法进行排除.【详解】A选项不正确,因为若,,则不成立;B选项不正确,若时就不成立;C选项不正确,同B,时就不成立;D选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变,故选D.【点睛】本题主要考查不等关系和不等式的基本性质,求解的关键是熟练掌握不等式的运算性质.6、C【解析】

利用基本不等式及函数的单调性即可判断.【详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【点睛】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.7、C【解析】

本题首先可根据判断出项错误,然后令可判断出项和项错误,即可得出结果。【详解】因为,所以,故错;当时,,故错;当时,,故错,故选C。【点睛】本题考查不等式的基本性质,主要考查通过不等式性质与比较法来比较实数的大小,可借助取特殊值的方法来进行判断,是简单题。8、A【解析】

先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。9、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.10、D【解析】

令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】

根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.12、【解析】

利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【详解】由题意,向量,则,,所以.故答案为【点睛】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、45【解析】

直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.14、1:3【解析】

记,,可得:为的重心,利用比例关系可得:,,,结合:即可得解.【详解】记,则则为的重心,如下图由三角形面积公式可得:,,又为的重心,所以,所以所以【点睛】本题主要考查了三角形重心的向量结论,还考查了转化能力及三角形面积比例计算,属于难题.15、【解析】

空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.16、【解析】

由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【点睛】考查统计中读图能力,从图中提取基本信息的基本能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据计算,,代入公式得到答案.(2)根据,得到,根据计算得到答案.【详解】解:(1)因为是锐角,且,在单位圆上,所以,,,∴(2)因为,所以,且,所以,,可得:,且,所以,.【点睛】本题考查了三角函数的计算,意在考查学生对于三角函数定义的理解和应用.18、(1)或(2)【解析】

(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【点睛】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.19、(1)人,,直方图见解析;(2)人、人、人;(3).【解析】

(1)由频率分布直方图能求出第组的频数,第组的频率,从而完成频率分布直方图.(2)根据第组的频数计算频率,利用各层的比例,能求出第组分别抽取进入第二轮面试的人数.(3)设第组的位同学为,第组的位同学为,第组的位同学为,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可知,第2组的频数为人,②第组的频率为,频率分布直方图如图所示,

(2)因为第组共有名学生,所以利用分层抽样在名学生中抽取名学生进入第二轮面试,每组抽取的人数分别为:第组:人,第组:人,第组:人,所以第组分别抽取人、人、人进入第二轮面试.(3)设第组的位同学为,第组的位同学为,第组的位同学为,则从这六位同学中抽取两位同学有种选法,分别为:,,,,,,,,,,,,,,,其中第组的位同学中至少有一位同学入选的有种,分别为:,,,∴第组至少有一名学生被考官面试的概率为.【点睛】本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题.20、(1);(2)见解析;(3)见解析.【解析】

(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【点睛】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论