版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市盐都区重点达标名校2024年中考联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH2.不等式5+2x<1的解集在数轴上表示正确的是().A. B. C. D.3.﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣ D.20184.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A. B.C. D.5.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15° B.22.5° C.30° D.45°7.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A. B. C. D.8.小手盖住的点的坐标可能为()A. B. C. D.9.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A. B. C. D.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.2 C. D.411.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)12.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果某数的一个平方根是﹣5,那么这个数是_____.14.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)15.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.16.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.17.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).18.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).20.(6分)已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是;∠AHB=.(2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.21.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).22.(8分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.23.(8分)如图:求作一点P,使,并且使点P到的两边的距离相等.24.(10分)计算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.25.(10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?26.(12分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.27.(12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据平行线的性质以及角平分线的定义,即可得到正确的结论.【详解】解:,故A选项正确;又故B选项正确;平分,,故C选项正确;,故选项错误;故选.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.2、C【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.3、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.4、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.5、B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.6、A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.7、D【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,,,当时,,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D.【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.8、B【解析】
根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合.故选:B.【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).9、C【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10、B【解析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB
∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.11、A【解析】
首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.12、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、25【解析】
利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.14、60【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.【详解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考点:解直角三角形的应用.15、【解析】
过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=【详解】解:如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵点A坐标为(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根据平行线分线段成比例得:AC:BC=OD:OE=2∶=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.16、AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.17、12π【解析】根据圆锥的侧面展开图是扇形可得,,∴该圆锥的侧面面积为:12π,故答案为12π.18、.【解析】
作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.【详解】解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知,即四边形为矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案为:2+2.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、C点到地面AD的距离为:(2+2)m.【解析】
直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=∴C点到地面AD的距离为:【点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.20、(1),45°;(2)不成立,理由见解析;(3).【解析】
(1)由正方形的性质,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.(2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,求得∠AHB=30°,故不成立.(3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.【详解】解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案为,45°;(2)不成立;理由如下:∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分两种情况:①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,同(2)得:AE=6+2,BF=3+3,则BM=BF=;综上所述,当A、E、F三点共线时,点B到直线AE的距离为.【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.21、(1);(2)这两个数字之和是3的倍数的概率为.【解析】
(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.【点睛】本题考核知识点:求概率.解题关键点:列出所有情况,熟记概率公式.22、(Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).【解析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.(3)△COB沿x轴向右平移过程中,分两个阶段:①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;②当<t<3时,如答图3所示,此时重叠部分为一个三角形.【详解】解:(Ⅰ)∵点在抛物线上,∴,得∴抛物线解析式为:,令,得,∴;令,得或,∴.(Ⅱ)为直角三角形.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴为直角三角形.(Ⅲ)设直线的解析式为,∵,∴,解得,∴,直线是直线向右平移个单位得到,∴直线的解析式为:;设直线的解析式为,∵,∴,解得:,∴.连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,∴..(2)当时,如答图3所示:设分别与交于点、点.∵,∴,.直线解析式为,令,得,∴..综上所述,与的函数关系式为:.23、见解析【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.24、1-【解析】
利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=.【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.25、(1)每次下调10%(2)第一种方案更优惠.【解析】
(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得
5000×(1-x)2=4050
解得x=10%或x=1.9(舍去)
答:平均每次下调10%.
(2)9.8折=98%,
100×4050×98%=396900(元)
100×4050-100×1.5×12×2=401400(元),
396900<401400,所以第一种方案更优惠.
答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.26、(1)作图见解析;(2)3;(3)【解析】
(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢铁厂建设钢筋工施工合同
- 高速公路服务区小青瓦施工协议
- 高铁绿化带改造承包合同
- 酒店建设硬装合同
- 垃圾处理供货施工合同范本
- 股份受让协议三篇
- 股票交易所行纪合同(2篇)
- 外场试验保密协议书
- 公司个人互赔协议书
- 土地出让合同中关于纳税额的约定
- DB32∕T 3690-2019 600MPa热处理、热轧带肋钢筋混凝土结构技术规程
- 风湿病概述及中国风湿病发展情况ppt
- 2021年食品安全监督抽检培训完整版PPT课件
- 外研版(三起)小学英语四年级上册教案(全册)
- 部编二年级下册语文词语表带拼音
- 检测大纲-整车检验、过程检验、零部件入厂检验、关键部位检验、成品入库检验
- 托辊技术规格书
- 踝关节扭伤.ppt
- CRH2型动车组一级检修作业办法081222
- 研究生英语议论文范文模板
- 燃气安全知识测试题(含答案)
评论
0/150
提交评论