版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年贵州省贵阳市航空枫阳中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.sin510°=()A. B.﹣ C. D.﹣参考答案:A【考点】GO:运用诱导公式化简求值.【分析】直接利用诱导公式化简,通过特殊角的三角函数求解即可.【解答】解:sin510°=sin=sin150°=sin30°=.故选:A.2.给出下列结论,其中判断正确的是
(
)A.数列前项和,则是等差数列B.数列前项和,则C.数列前项和,则不是等比数列D.数列前项和,则ks5u参考答案:D略3.的值是(
)A.
B.
C.
D.参考答案:A略4.函数,则A.1
B.2
C.3
D.4参考答案:B略5.函数的定义域为R,则实数k的取值范围为
()A.k<0或k>4
B.k≥4或k≤0
C.0<k<4
D.0≤k<4参考答案:D略6.若x∈R,f(x)是y=2﹣x2,y=x这两个函数的较小者,则f(x)的最大值为()A.2 B.1 C.﹣1 D.无最大值参考答案:B【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】由于f(x)是y=2﹣x2,y=x这两个函数的较小者,数形结合可得结论.【解答】解:由于f(x)是y=2﹣x2,y=x这两个函数的较小者,由2﹣x2=x,解得x=﹣2,x=1,故函数y=2﹣x2与函数y=x的图象的交点坐标为(1,1)、(﹣2,﹣2),画出函数f(x)的图象,如图所示:故当x=1时,函数f(x)的最大值为1,故选B.【点评】本题主要考查函数的最值及其几何意义,体现了数形结合的数学思想,属于中档题.7.图1是由图2中的哪个平面图旋转而得到的(
)参考答案:A略8.已知,则函数的解析式为(
)
参考答案:C9.下列函数中,既是偶函数又在上单调递增的是(
)
A.
B.
C.
D.参考答案:D10.已知三条直线,,,三个平面,,.下面四个命题中,正确的是()
A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知=
=
=
,若A、B、D三点共线,则k=____________.参考答案:12.在△ABC中,B=600,,A=450,则b=____
__.参考答案:略13.已知函数,,若,则__________.参考答案:3略14.如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记为OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:①;②任意,都有;③任意且,都有.其中正确结论的序号是
.(把所有正确结论的序号都填上).参考答案:①②①:如图,当时,与相交于点,∵,则,∴,∴①正确;②:由于对称性,恰好是正方形的面积,∴,∴②正确;③:显然是增函数,∴,∴③错误.
15.在轴上的截距是5,倾斜角为的直线方程为。参考答案:y=-x+5。16.满足条件的集合有_________个。参考答案:3略17.某校共有师生2400人,现用分层抽样的方法从所有师生中抽取一个容量为120人的样本.已知从学生中抽取的人数为110人,则该校的教师人数是________.参考答案:200三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}中,.(1)求证:是等比数列,求数列{an}的通项公式;(2)已知:数列{bn},满足①求数列{bn}的前n项和Tn;②记集合若集合M中含有5个元素,求实数的取值范围.参考答案:(1)证明见解析,(2)①②【分析】(1)计算得到:得证.(2)①计算的通项公式为,利用错位相减法得到.②将代入集合M,化简并分离参数得,确定数列的单调性,根据集合中含有个元素得到答案.【详解】(1),为等比数列,其中首项,公比为.所以,.(2)①数列的通项公式为
①
②①-②化简后得.②将代入得化简并分离参数得,设,则易知由于中含有个元素,所以实数要小于等于第5大的数,且比第6大的数大.,,综上所述.【点睛】本题考查了数列的证明,数列的通项公式,错位相减法,数列的单调性,综合性强计算量大,意在考查学生的计算能力和综合应用能力.19.设函数f(x)=ax﹣a﹣x(a>0且a≠1).(1)若f(1)<0,试判断函数f(x)的单调性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立时实数t的取值范围;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.参考答案:解:(1)∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1.∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减.不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5.(2)∵f(1)=,∴,即2a2﹣3a﹣2=0.∴a=﹣(舍去)或a=2,∴a=2,∴g(x)=22x+2﹣2x﹣2m(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.令t=f(x)=2x﹣2﹣x,由(1)可知t=f(x)=2x﹣2﹣x为增函数,∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(t≥),若m≥,当t=m时,h(t)min=2﹣m2=﹣2,∴m=2若m<,当t=时,h(t)min=﹣3m=﹣2,解得m=>,舍去综上可知m=2考点:函数奇偶性的性质;函数单调性的判断与证明;函数的最值及其几何意义.专题:函数的性质及应用.分析:本题(1)利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得到本题结论;(2)令t=f(x)=2x﹣2﹣x,得到二次函数h(t)=t2﹣2mt+2在区间[,+∞)上的最小值,分类讨论研究得到m=2,得到本题结论.解答:解:(1)∵f(﹣x)=a﹣x﹣ax=﹣f(x),∴f(x)是定义域为R的奇函数,∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,∴,又∵a>0,且a≠1,∴0<a<1.∵ax单调递减,a﹣x单调递增,∴f(x)在R上单调递减.不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5.(2)∵f(1)=,∴,即2a2﹣3a﹣2=0.∴a=﹣(舍去)或a=2,∴a=2,∴g(x)=22x+2﹣2x﹣2m(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.令t=f(x)=2x﹣2﹣x,由(1)可知t=f(x)=2x﹣2﹣x为增函数,∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(t≥),若m≥,当t=m时,h(t)min=2﹣m2=﹣2,∴m=2若m<,当t=时,h(t)min=﹣3m=﹣2,解得m=>,舍去综上可知m=2.点评:本题考查了函数的奇偶性、单调性,还考查了转化化归和分类讨论的数学思想,本题难度适中,属于中档题20.已知函数f(x)=cos2x+sinxcosx+1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在[,]上的最大值和最小值,并求函数取得最大值和最小值时自变量x的值.参考答案:【考点】三角函数的周期性及其求法;三角函数中的恒等变换应用;三角函数的最值.【分析】利用二倍角公式、两角和的正弦函数化简函数为一个角的一个三角函数的形式(1)利用周期公式求出函数的周期;(2)求出,根据正弦函数的单调性求出函数的最值,写出求函数取得最大值和最小值时的自变量x的值.【解答】解:==(1)f(x)的最小正周期(2)∵∴∴当,即时,当或时,即或时,.21.设函数y=是定义在(0,+∞)上的增函数,并满足(1)
求f(1)的值;(2)
若存在实数m,使,求m的值(3)
如果,求x的范围参考答案:解析:①令x=0,y=0设解②③22.若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.(1)已知是上的正函数,求的等域区间;(2)试探究是否存在实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津河西区高三一模文综地理试题
- 余姚中学2023学年第二学期期中检测高一生物参考答案
- 小学生开学安全教育教案
- 机械设备生产运输协议
- 4S店展厅装修改造合同
- 2022年人教版九年级历史下册期末考试【及答案】
- 2023-2024学年全国小学四年级上科学仁爱版期中试卷(含答案解析)
- 微分几何第二章曲面论第五节曲面论的基本定理
- 个人信用借款担保合同2024年
- 2024年太原客运资格证理论考试题
- 公司业绩提成方案
- 高效数据标注流程
- 2024年物流配送行业无人机配送方案
- 全球海盗史:从维京人到索马里海盗
- 北京市大兴区2023-2024学年九年级上学期期末化学试题
- 琵琶简介课件
- 人美版全国小学美术优质课一等奖《摆花样》课件
- 初中道德与法治学习方法指导课件
- 母婴血型不合溶血病诊疗规范2022版
- 电动汽车结构与原理课件:电动汽车的结构组成
- 认知行为疗法(CBT)实操讲座
评论
0/150
提交评论