2022年吉林省辉南县中考一模数学试题含解析_第1页
2022年吉林省辉南县中考一模数学试题含解析_第2页
2022年吉林省辉南县中考一模数学试题含解析_第3页
2022年吉林省辉南县中考一模数学试题含解析_第4页
2022年吉林省辉南县中考一模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年吉林省辉南县中考一模数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条 B.6条 C.8条 D.9条2.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A.675×102 B.67.5×102 C.6.75×104 D.6.75×1053.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A. B.2 C. D.4.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是()A. B. C. D.5.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1) B.(1,2) C.(1,3) D.(3,1)6.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD=()A. B. C. D.7.在数轴上到原点距离等于3的数是()A.3 B.﹣3 C.3或﹣3 D.不知道8.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是()A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.59.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱10.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形每个内角为140°,则这个多边形的边数是________.12.分解因式:2a2﹣2=_____.13.一次函数y=kx+b(k≠0)的图象如图所示,那么不等式kx+b<0的解集是_____.14.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.16.如果x+y=5,那么代数式的值是______.三、解答题(共8题,共72分)17.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求证:AF=BF.18.(8分)计算:|﹣1|+(﹣1)2018﹣tan60°19.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?20.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?21.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.22.(10分)计算:+(﹣)﹣1+|1﹣|﹣4sin45°.23.(12分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)=;②若点B(b,2),且d(P,B)=5,则b=;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.24.抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.(1)抛物线的对称轴是直线________;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选:D.【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.2、C【解析】

根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75×104,故选C.3、C【解析】

根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.4、B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.5、D【解析】

过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.6、D【解析】

根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.【详解】解:===,故选D.【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.7、C【解析】

根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.8、C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.9、A【解析】

侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.

故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..10、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.二、填空题(本大题共6个小题,每小题3分,共18分)11、九【解析】

根据多边形的内角和定理:180°•(n-2)进行求解即可.【详解】由题意可得:180°(n−2)=140°n,解得n=9,故多边形是九边形.故答案为9.【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.12、2(a+1)(a﹣1).【解析】

先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、x>﹣1.【解析】

一次函数y=kx+b的图象在x轴下方时,y<0,再根据图象写出解集即可.【详解】当不等式kx+b<0时,一次函数y=kx+b的图象在x轴下方,因此x>﹣1.故答案为:x>﹣1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.14、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,45×2=90(千米),故答案为90.【点评】本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.15、A,18,1【解析】

A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;

B、分别得到前后面,上下面,左右面的面积,相加即可求解.【详解】A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,

∴该长方体需要小立方体4×32=36个,

∵小明用18个边长为1的小正方体搭成了一个几何体,

∴小亮至少还需36-18=18个小立方体,

B、表面积为:2×(8+8+7)=1.

故答案是:A,18,1.【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.16、1【解析】

先将分式化简,然后将x+y=1代入即可求出答案【详解】当x+y=1时,原式=x+y=1,故答案为:1.【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.三、解答题(共8题,共72分)17、(1)见解析;(2)2.【解析】

(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答18、1【解析】

原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.19、软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】

(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=≠,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.21、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】

(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;故答案为:43.2°(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、【解析】

根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【详解】解:+(﹣)﹣1+|1﹣|﹣1sin15°=2﹣3+﹣1﹣1×=2﹣3+﹣1﹣2=﹣1.【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论