版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省永春县第一中学数学高一下期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,,,则()A. B. C. D.2.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.3.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(
)A. B. C. D.4.设等差数列的前项的和为,若,,且,则()A. B. C. D.5.已知点,和向量,若,则实数的值为()A. B. C. D.6.已知且,则的取值范围是()A. B. C. D.7.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.8.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件9.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,10.二进制是计算机技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”。当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”。如图所示,把十进制数1010化为二进制数(1010)2,十进制数9910化为二进制数11000112,把二进制数(10110A.932 B.931 C.10二、填空题:本大题共6小题,每小题5分,共30分。11.设常数,函数,若的反函数的图像经过点,则_______.12.已知等比数列的公比为2,前n项和为,则=______.13.若直线与直线互相平行,那么a的值等于_____.14.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.15.在等比数列中,,,则__________.16.数列是等比数列,,,则的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,直三棱柱中,点是棱的中点,点在棱上,已知,,(1)若点在棱上,且,求证:平面平面;(2)棱上是否存在一点,使得平面证明你的结论。18.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.19.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.20.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?21.已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由正弦定理构造方程即可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形的问题,属于基础题.2、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.3、A【解析】
画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.4、C【解析】,,,,,,故选C.5、B【解析】
先求出,再利用共线向量的坐标表示求实数的值.【详解】由题得,因为,所以.故选:B【点睛】本题主要考查向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.6、A【解析】分析:,由,可得,又,可得,化简整理即可得出.详解:,由,可得,又,可得,化为,解得,则的取值范围是.故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.7、C【解析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【点睛】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.8、D【解析】
不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.9、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.10、D【解析】
利用古典概型的概率公式求解.【详解】二进制的后五位的排列总数为25二进制的后五位恰好有三个“1”的个数为C5由古典概型的概率公式得P=10故选:D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.12、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.13、;【解析】由题意得,验证满足条件,所以14、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.15、8【解析】
可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.16、【解析】
由题得计算得解.【详解】由题得,所以.因为等比数列同号,所以.故答案为:【点睛】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)通过证明,进而证明平面再证明平面平面;(2)取棱的中点,连接交于,结合三角形重心的性质证明,从而证明平面.【详解】(1)在直三棱柱中,由于平面,平面,所以平面平面.(或者得出)由于,是中点,所以.平面平面,平面,所以平面.而平面,于是.因为,,所以,所以.与相交,所以平面,平面所以平面平面(2)为棱的中点时,使得平面,证明:连接交于,连接.因为,为中线,所以为的重心,.从而.面,平面,所以平面【点睛】本题考查面面垂直的证明和线面平行的证明.面面垂直的证明要转化为证明线面垂直,线面平行的证明要转化为证明线线平行.18、(1);(2)【解析】
(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题.19、(1)或,(2),增区间为:【解析】
(1)根据得到,再根据的范围解方程即可.(2)首先根据题意得到,再根据的范围即可得到函数的最大值和单调增区间.【详解】因为,所以,即.因为,.所以或,即或.(2).因为,所以.所以,.因为,所以.令,得.因为,所以增区间为:.【点睛】本题第一问考查根据三角函数值求角,同时考查了平面向量平行的坐标运算,第二问考查了三角函数的最值和单调区间,属于中档题.20、(1);(2)【解析】
(1)分别求出基本事件总数及为整数的事件数,再由古典概型概率公式求解;(2)建立坐标系,找出会面的区域,用会面的区域面积比总区域面积得答案.【详解】(1)所有的基本事件共有4×3=12个,记事件A={为整数},因为,则事件A包含的基本事件共有2个,∴p(A)=;(2)以x、y分别表示两人到达时刻,则.两人能会面的充要条件是.建立直角坐标系如下图:∴P=.∴这两人能会面的概率为.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业买卖担保合同
- 高职班主任工作计划范文
- 七年级教学计划三篇
- 心理健康工作计划
- 师德规范学习心得体会
- 游艺机项目可行性研究报告
- 初中数学教师年度考核总结
- 幼儿园大班班会活动教案
- 公司经理述职报告三篇
- 小升初自我鉴定合集12篇
- 森林草原防火工作培训课件
- 2023年妇科门诊总结及计划
- 方大重整海航方案
- 河北省秦皇岛市昌黎县2023-2024学年八年级上学期期末数学试题
- 矿山治理专项研究报告范文
- 国家开放大学2023年7月期末统一试《11124流行病学》试题及答案-开放本科
- 货运安全生产管理制度
- 幼儿园中班体育《我们爱运动》+课件
- 郭锡良《古代汉语》课件
- 外研版四年级英语下册(一年级起点)全册完整课件
- 防止电力生产事故的-二十五项重点要求(2023版)
评论
0/150
提交评论