2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题含解析_第1页
2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题含解析_第2页
2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题含解析_第3页
2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题含解析_第4页
2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆哈密地区第二中学高一下数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱锥中,,,,平面平面,则三棱锥外接球的表面积为()A. B. C. D.2.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.13.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.4.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.15605.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.46.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x99.5m10.511销售量y11n865由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是y=-3.2x+40,且m+n=20,则其中的n=A.10 B.11 C.12 D.10.57.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数C.方差 D.极差8.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为()A.48里 B.24里 C.12里 D.6里9.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.010.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.12.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项13.已知,,与的夹角为钝角,则的取值范围是_____;14.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).15.在△ABC中,若a2=b2+bc+c2,则A=________.16.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?(2)从所抽取的样本中身高在和的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?18.某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:245683040605070(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10万元时,销售额为多少?附:公式为:,参考数字:,.19.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.20.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.21.(Ⅰ)已知直线过点且与直线垂直,求直线的方程;(Ⅱ)求与直线的距离为的直线方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

结合题意,结合直线与平面垂直的判定和性质,得到两个直角三角形,取斜边的一半,即为外接球的半径,结合球表面积计算公式,计算,即可.【详解】过P点作,结合平面ABC平面PAC可知,,故,结合可知,,所以,结合所以,所以,故该外接球的半径等于,所以球的表面积为,故选D.【点睛】考查了平面与平面垂直的性质,考查了直线与平面垂直的判定和性质,难度偏难.2、B【解析】

通过等差中项的性质即可得到答案.【详解】由于,故,故选B.【点睛】本题主要考查等差数列的性质,难度较小.3、B【解析】

由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.4、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.5、D【解析】

由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.6、A【解析】

由表求得x,y,代入回归直线方程16m+5n=210,联立方程组,即可求解,得到答案.【详解】由题意,5家商场的售价x元和销售量y件之间的一组数据,可得x=9+9.5+m+10.5+115又由回归直线的方程y=-3.2x+40,则30+n5=-3.2×又因为m+n=20,解得m=10,n=10,故选A.【点睛】本题主要考查了回归直线方程的特征及其应用,其中解答中熟记回归直线方程的特征,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】

可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为.则①原始中位数为,去掉最低分,最高分,后剩余,中位数仍为,A正确.②原始平均数,后来平均数平均数受极端值影响较大,与不一定相同,B不正确③由②易知,C不正确.④原极差,后来极差可能相等可能变小,D不正确.【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.8、C【解析】

根据等比数列前项和公式列方程,求得首项的值,进而求得的值.【详解】设第一天走,公比,所以,解得,所以.故选C.【点睛】本小题主要考查等比数列前项和的基本量计算,考查等比数列的通项公式,考查中国古典数学文化,属于基础题.9、C【解析】

由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;

②,则平行,相交,异面都有可能,故不正确;

③,则与α平行,相交都有可能,故不正确.

故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.10、B【解析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.12、【解析】

先求,利用二次函数性质求最值即可【详解】由题当时最小故答案为8【点睛】本题考查等差数列的求和公式,考查二次函数求最值,是基础题13、【解析】

与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.14、6【解析】

先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.15、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°16、【解析】

根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)12600;(2).【解析】

(1)由频率分布直方图知,身高正常的频率,于是可得答案;(2)先计算出样本容量,再找出样本中身高在中的人数,从而利用古典概型公式得到答案.【详解】(1)由频率分布直方图知,身高正常的频率为0.7,所以估计总体,即该地区所有高二年级男生中身高正常的频率为0.7,所以该地区高二男生中身高正常的大约有人.(2)由所抽取样本中身高在的频率为,可知身高在的频率为,所以样本容量为,则样本中身高在中的有3人,记为,身高在中的有2人,记为,从这5人中再选2人,共有,,,,,,,,,10种不同的选法,而且每种选法都是互斥且等可能的,所以,所选2人中至少有一人身高大于185的概率.【点睛】本题主要考查频率分布直方图,古典概型的相关计算,意在考查学生的转化能力,计算能力和分析能力,难度中等.18、(1)散点图见详解;(2);(3)万元.【解析】

(1)根据表格数据,绘制散点图即可;(2)根据参考数据,结合表格数据,分别求解回归直线方程的系数即可;(3)令(2)中所求回归直线中,即可求得预测值.【详解】(1)根据表格中的5组数据,绘制散点图如下:(2)由表格数据可知:,故可得故所求回归直线方程为.(3)由(2)知,令,解得.故广告费支出为10万元时,销售额为万元.【点睛】本题考查散点图的绘制,线性回归直线方程的求解,以及应用回归直线方程进行预测,属综合性基础题.19、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.20、(1);(2).【解析】

(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【点睛】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑为,避免利用方程思想求出边的值,考查计算能力,属于中等题.21、(Ⅰ);(Ⅱ)或.【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论