版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省六安三校数学高一下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与直线垂直,则()A. B. C.或 D.或2.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.13.执行如图所示的程序框图,则输出的值是()A. B. C. D.4.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或5.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且6.在钝角三角形ABC中,若B=45°,a=2,则边长cA.(1,2) B.(0,1)∪(7.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,328.等比数列的前n项和为,已知,则A. B. C. D.9.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定10.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆上的点到直线4x+3y-12=0的距离的最小值是12.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).13.明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头几盏灯?”则尖头共有__________盏灯.14.已知数列满足:其中,若,则的取值范围是______.15.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.16.已知向量,,若,则实数__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l:x+3y﹣2=1.(1)求与l垂直,且过点(1,1)直线方程;(2)求圆心为(4,1),且与直线l相切的圆的方程.18.如图所示,某海轮以30海里/小时的速度航行,在A点测得海面上油井P在南偏东,向北航行40分钟后到达点,测得油井P在南偏东,海轮改为北偏东的航向再行驶80分钟到达C点,求P,C间的距离.19.已知函数.(1)求函数的最小正周期和单调递减区间;(2)求函数在上的最大值和最小值.20.某厂每年生产某种产品万件,其成本包含固定成本和浮动成本两部分.已知每年固定成本为20万元,浮动成本,.若每万件该产品销售价格为40万元,且每年该产品产销平衡.(1)设年利润为(万元),试求与的关系式;(2)年产量为多少万件时,该厂所获利润最大?并求出最大利润.21.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由垂直,可得,即可求出的值.【详解】直线与直线垂直,,解得或.故选D.【点睛】对于直线:和直线:,①;②.2、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m3、C【解析】
根据程序框图列出算法循环的每一步,结合判断条件得出输出的的值.【详解】执行如图所示的程序框图如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循环体,输出的值为,故选C.【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.4、B【解析】
由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.5、D【解析】可取,;,,,,,故选D.6、D【解析】试题分析:解法一:,由三角形正弦定理诱导公式有,利用三角恒等公式能够得到,当A为锐角时,0∘<A<45∘,,即,当A为钝角时,90∘<A<135∘,,综上所述,;解法二:利用图形,如图,,,当点A(D)在线段BE上时(不含端点B,E),为钝角,此时;当点A在线段EF上时,为锐角三角形或直角三角形;当点A在射线FG(不含端点F)上时,为钝角,此时,所以c的取值范围为.考点:解三角形.【思路点睛】解三角形需要灵活运用正余弦定理以及三角形的恒等变形,在解答本题时,利用三角形内角和,将两角化作一角,再利用正弦定理即可列出边长c与角A的关系式,根据角A的取值范围即可求出c的范围,本题亦可利用物理学中力的合成,合力的大小来确定c的大小,正如解法二所述.7、B【解析】
对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.8、A【解析】设公比为q,则,选A.9、C【解析】
延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.10、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.12、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.13、1【解析】
依题意,这是一个等比数列,公比为2,前7项和为181,由此能求出结果.【详解】依题意,这是一个等比数列,公比为2,前7项和为181,∴181,解得a1=1.故答案为:1.【点睛】本题考查等比数列的首项的求法,考查等比数列的前n项和公式,是基础题.14、【解析】
令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.15、1【解析】
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.16、【解析】
根据平面向量时,列方程求出的值.【详解】解:向量,,若,则,即,解得.故答案为:.【点睛】本题考查了平面向量的坐标运算应用问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】
(1)根据两直线垂直的性质,设出所求直线的方程,将点坐标代入,由此求得所求直线方程.(2)利用圆心到直线的距离求得圆的半径,由此求得圆的方程.【详解】(1)根据题意,设要求直线的方程为3x﹣y﹣m=1,又由要求直线经过点(1,1),则有3﹣1﹣m=1,解可得m=2;即要求直线的方程为3x﹣y﹣2=1;(2)根据题意,设要求圆的半径为r,若直线l与圆相切,则有r=d,则要求圆的方程为(x﹣4)2+(y﹣1)2.【点睛】本小题主要考查两条直线垂直的知识,考查直线和圆的位置关系,属于基础题.18、海里【解析】
在中,利用正弦定理可求得BP的长,在直角三角形中,利用勾股定理,可求P、C间的距离.【详解】在中,,,,由正弦定理知得,∴.在中,,又,∴,∴可得P、C间距离为(海里)【点睛】本题的考点是解三角形的实际应用,主要考查将实际问题转化为数学问题,可把条件和问题放到三角形中,利用正弦定理及勾股定理求解.19、(1);(2)5;-2【解析】
(1)根据二倍角公式和辅助角公式化简即可(2)由求出的范围,再根据函数图像求最值即可【详解】(1),,令,即单减区间为;(2)由,当时,的最小值为:-2;当时,的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题20、(1);(2)产量(万件)时,该厂所获利润最大为100万元.【解析】
(1)由销售收入减去成本可得利润;(2)分段求出的最大值,然后比较可得.【详解】(1)由题意;即;(2)时,,时,,当时,在是递增,在上递减,时,综上,产量(万件)时,该厂所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业拓展训练服务协议规范文本版A版
- 2025-2030全球低功耗纵横开关行业调研及趋势分析报告
- 2025-2030全球企业能源管理系统行业调研及趋势分析报告
- 2025年全球及中国磁性固相萃取吸附剂行业头部企业市场占有率及排名调研报告
- 2025-2030全球塑料用群青紫行业调研及趋势分析报告
- 2025-2030全球铒玻璃固体激光器行业调研及趋势分析报告
- 二零二五年装载机租赁与设备租赁合同2篇
- 2025年度锅炉销售团队建设合同3篇
- 二零二五年度建材行业品牌推广与营销合作协议2篇
- 二零二五版人工智能股权投资合作协议3篇
- 智慧农业的传感器与智能设备
- 旅游路线规划设计方案
- DB37-T 5097-2021 山东省绿色建筑评价标准
- 五年级上册简易方程练习100题及答案
- MDR医疗器械法规考核试题及答案
- 让学生看见你的爱
- 领导沟通的艺术
- 发生用药错误应急预案
- 南浔至临安公路(南浔至练市段)公路工程环境影响报告
- 绿色贷款培训课件
- 大学生预征对象登记表(样表)
评论
0/150
提交评论