2024届江苏省常州市奔牛高级中学数学高一下期末监测试题含解析_第1页
2024届江苏省常州市奔牛高级中学数学高一下期末监测试题含解析_第2页
2024届江苏省常州市奔牛高级中学数学高一下期末监测试题含解析_第3页
2024届江苏省常州市奔牛高级中学数学高一下期末监测试题含解析_第4页
2024届江苏省常州市奔牛高级中学数学高一下期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省常州市奔牛高级中学数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若使得在区间上为增函数的整数有且仅有一个,则实数的取值范围是()A. B. C. D.2.设,函数在区间上是增函数,则()A. B.C. D.3.已知数列满足,,则的值为()A. B. C. D.4.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为()A.85,85 B.85,86 C.85,87 D.86,865.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.6.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.217.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.8.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc29.在中,,,则的最大值为A. B. C. D.10.执行如下图所示的程序框图,若输出的,则输入的的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.12.在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________.13.已知数列满足:,则___________.14.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.15.若向量与的夹角为,与的夹角为,则______.16.如图,在边长为的菱形中,,为中点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.18.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:19.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.20.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.21.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据在区间上为增函数的整数有且仅有一个,结合正弦函数的单调性,即可求得答案.【详解】,使得在区间上为增函数可得当时,满足整数至少有,舍去当时,,要使整数有且仅有一个,须,解得:实数的取值范围是.故选:A.【点睛】本题主要考查了根据三角函数在某区间上单调求参数值,解题关键是掌握正弦型三角函数单调区间的解法和结合三角函数图象求参数范围,考查了分析能力和计算能力,属于难题.2、C【解析】

首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【详解】因为,函数在区间上是增函数,所以.故选C.【点睛】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.3、B【解析】

由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【详解】,,则,,,因此,,故选B.【点睛】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.4、B【解析】

根据茎叶图的数据,选择对应的众数和中位数即可.【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是.故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题.5、C【解析】

试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.6、C【解析】

通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.7、C【解析】

利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.8、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.9、A【解析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.10、D【解析】由题意,当输入,则;;;,终止循环,则输出,所以,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.12、【解析】

设滚动后圆的圆心为C,切点为A,连接CP.过C作与x轴正方向平行的射线,交圆C于B(2,1),设∠BCP=θ,则根据圆的参数方程,得P的坐标为(1+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(1,1),算出,结合三角函数的诱导公式,化简可得P的坐标为,即为向量的坐标.【详解】设滚动后的圆的圆心为C,切点为,连接CP,过C作与x轴正方向平行的射线,交圆C于,设,∵C的方程为,∴根据圆的参数方程,得P的坐标为,∵单位圆的圆心的初始位置在,圆滚动到圆心位于,,可得,可得,,代入上面所得的式子,得到P的坐标为,所以的坐标是.故答案为:.【点睛】本题考查圆的参数方程,平面向量坐标表示的应用,解题的关键是根据数形结合找到变量的角度,属于中等题.13、0【解析】

先由条件得,然后【详解】因为所以因为,且所以,即故答案为:0【点睛】本题考查的是数列的基础知识,较简单.14、9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】

根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.16、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【点睛】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.18、(1)见解析;(2),;(3)12.38万元【解析】

(1)在坐标系中画出5个离散的点;(2)利用最小二乘法求出,再利用回归直线过散点图的中心,求出;(3)将代入(2)中的回归直线方程,求得.【详解】(1)散点图如下:所以从散点图年,它们具有线性相关关系.(2),,于是有,.(3)回归直线方程是当时,(万元),即估计使用年限为10年时,维修费用是万元.【点睛】本题考查散点图的作法、最小二乘法求回归直线方程及利用回归直线预报当时,的值,考查数据处理能力.19、(1)0(2)【解析】

(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【点睛】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.20、(1);(2)【解析】

(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出的值,由结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间应该包含在的一个增区间内,根据包含关系列出不等式组,求解即可得出正数的取值范围.【详解】(1)因为,所以,即.因为,所以所以.所以.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论