




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省2023-2024学年高一下数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算:A. B. C. D.2.已知之间的几组数据如下表:
1
2
3
4
5
6
0
2
1
3
3
4
假设根据上表数据所得线性回归直线方程为中的前两组数据和求得的直线方程为则以下结论正确的是()A. B. C. D.3.若,且,则下列不等式中正确的是()A. B. C. D.4.已知是两条异面直线,,那么与的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直5.在区间上随机选取一个数,则满足的概率为()A. B. C. D.6.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-57.《五曹算经》是我国南北朝时期数学家甄鸾为各级政府的行政人员编撰的一部实用算术书.其第四卷第九题如下:“今有平地聚粟,下周三丈高四尺,问粟几何?”其意思为“场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的体积约为1.62立方尺,圆周率约为3,估算出堆放的稻谷约有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛8.已知是等差数列的前项和,公差,,若成等比数列,则的最小值为()A. B.2 C. D.9.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项10.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为12.已知函数,,则的最大值是__________.13.设公差不为零的等差数列的前项和为,若,则__________.14.已知sin+cosα=,则sin2α=__15.将角度化为弧度:________.16.数列定义为,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,点,分别是,的中点,,.求证:⑴平面;⑵.18.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令,求数列的前n项和.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.20.土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为个销售利润为元.(i)求关于的函数关系式;(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.21.对于函数和实数,若存在,使成立,则称为函数关于的一个“生长点”.若为函数关于的一个“生长点”,则______.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据正弦余弦的二倍角公式化简求解.【详解】,故选A.【点睛】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.2、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′3、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。4、C【解析】
由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【点睛】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.5、D【解析】
在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、D【解析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。7、C【解析】
根据圆锥的周长求出底面半径,再计算圆锥的体积,从而估算堆放的稻谷数.【详解】设圆锥形稻谷堆的底面半径为尺,则底面周长为尺,解得尺,又高为尺,所以圆锥的体积为(立方尺);又(斛,所以估算堆放的稻谷约有61.73(斛.故选:.【点睛】本题考查了椎体的体积计算问题,也考查了实际应用问题,是基础题.8、A【解析】
由成等比数列可得数列的公差,再利用等差数列的前项和公式及通项公式可得为关于的式子,再利用对勾函数求最小值.【详解】∵成等比数列,∴,解得:,∴,令,令,其中的整数,∵函数在递减,在递增,∴当时,;当时,,∴.故选:A.【点睛】本题考查等差数列与等比数列的基本量运算、函数的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数,如果利用基本不等式求解,等号是取不到的.9、B【解析】
根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.10、B【解析】
设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.12、3【解析】函数在上为减函数,故最大值为.13、【解析】
设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【点睛】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.14、【解析】∵,∴即,则.故答案为:.15、【解析】
根据角度和弧度的互化公式求解即可.【详解】.故答案为:.【点睛】本题考查角度和弧度的互化公式,属于基础题.16、【解析】
由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】
(1)由中位线定理即可说明,由此证明平面;(2)首先证明平面,由线面垂直的性质即可证明【详解】证明:⑴因为在中,点,分别是,的中点所以又因平面,平面从而平面⑵因为点是的中点,且所以又因,平面,平面,故平面因为平面所以【点睛】本题考查线面平行、线面垂直的判定以及线面垂直的性质,属于基础题.18、(1);(2)答案不唯一,详见解析.【解析】
(1)运用等差中项性质和等比数列的通项公式,解方程可得公比;(2)讨论公比,结合等差数列和等比数列的求和公式,以及错位相减法求和,即可得到所求和.【详解】(1)因为是一个公比为的等比数列,所以.因为成等差数列,所以即.解得.(2)①若q=2,又它的前4和,得,解得所以.因为,∴,2,∴,∴②若q=1,又它的前4和,即4因为,所以.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.19、(1),(2)【解析】
(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.20、(1)(2)(i)();(ii)【解析】
(1)设日需求量为,直接利用频率分布图中的平均数公式估算该小区土笋冻日需求量的平均数;(2)(i)分类讨论得();(ii)由(i)可知,利润,当且仅当日需求量,再利用互斥事件的概率和公式求解.【详解】解:(1)设日需求量为,依题意的频率为;的频率为;的频率为;的频率为.则与的频率为.故该小区土笋冻日需求量的平均数,.(2)(i)当时,;当时,.故()(ii)由(i)可知,利润,当且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年税务师备考必避坑试题及答案
- 数据分析的实际技巧 试题及答案解析
- 食品安全课程复习试题及答案
- 2025企业租赁合同标准版
- 2025中介服务佣金合同范本
- 2025年高考考前信息必刷卷02英语(新高考I卷)解析版
- 2025停车场承包协议合同书
- 生育补贴政策落地方案
- 2025专项许可经营合同
- 低空经济政策红利与产业机遇透析
- 《碳排放管理师》(高级)培训考试模拟题及答案
- 2024年重庆市高考历史试卷(含答案)
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 湖南省张家界市慈利县2023-2024学年八年级下学期期中考试物理试题
- 金属非金属地下矿山监测监控系统建设规范
- 2024年苏州市轨道交通集团有限公司招聘笔试参考题库附带答案详解
- 新概念英语第2册课文(完整版)
- 水培吊兰的养殖方法要领
- 动物的迁徙行为与地球生态系统
- 【小学心理健康教育分析国内外文献综述4100字】
- 2025年日历日程表含农历可打印
评论
0/150
提交评论