2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年东莞市高一数学第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个2.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④3.已知a,b,c,d∈R,则下列不等式中恒成立的是()A.若a>b,c>d,则ac>bd B.若a>b,则C.若a>b>0,则(a﹣b)c>0 D.若a>b,则a﹣c>b﹣c4.在中,,BC边上的高等于,则()A. B. C. D.5.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为,则勾与股的比为()A. B. C. D.6.直线l:3x+4y+5=0被圆M:(x–2)2+(y–1)2=16截得的弦长为()A. B.5 C. D.107.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π8.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.9.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°10.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.12.已知数列的前项和为,,则__________.13.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.14.已知函数一个周期的图象(如下图),则这个函数的解析式为__________.15.若满足约束条件则的最大值为__________.16.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求的取值范围.18.在中,(Ⅰ)求;(Ⅱ)若,,求的值19.如图,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中点,M(1)求证:AE⊥平面PAD;(2)若AB=AP=2,求三棱锥P-ACM的体积.20.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.21.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.2、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.3、D【解析】

根据不等式的性质判断.【详解】当时,A不成立;当时,B不成立;当时,C不成立;由不等式的性质知D成立.故选D.【点睛】本题考查不等式的性质,不等式的性质中,不等式两边乘以同一个正数,不等式号方向不变,两边乘以同一个负数,不等式号方向改变,这个性质容易出现错误:一是不区分所乘数的正负,二是不区分是否为1.4、C【解析】试题分析:设,故选C.考点:解三角形.5、B【解析】

分别求解出小正方形和大正方形的面积,可知面积比为,从而构造方程可求得结果.【详解】由图形可知,小正方形边长为小正方形面积为:,又大正方形面积为:,即:解得:本题正确选项:【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.6、C【解析】

求出圆心到直线l的距离,再利用弦长公式进行求解即可.【详解】∵圆(x–2)2+(y–1)2=16,∴圆心(2,1),半径r=4,圆心到直线l:3x+4y+5=0的距离d==3,∴直线3x+4y+5=0被圆(x–2)2+(y–1)2=16截得的弦长l=2=2.故选C.【点睛】本题考查了直线被圆截得的弦长公式,主要用到了点到直线的距离公式.7、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.8、B【解析】

根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.9、A【解析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.10、B【解析】

先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为1.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.12、【解析】分析:由,当时,当时,相减可得,则,由此可以求出数列的通项公式详解:当时,当时由可得二式相减可得:又则数列是公比为的等比数列点睛:本题主要考查了等比数列的通项公式即数列递推式,在解答此类问题时看到,则用即可算出,需要注意讨论的情况。13、【解析】

由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【点睛】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.14、【解析】

由函数的图象可得T=﹣,解得:T==π,解得ω=1.图象经过(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式为:f(x)=.故答案为f(x)=.15、【解析】

作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.16、【解析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【点睛】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由共线向量的坐标运算化简可得,将化切后代入即可(2)利用向量的坐标运算化简,利用正弦定理求,根据角的范围求值域即可.【详解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范围是.【点睛】本题主要考查了向量数量积的坐标运算,三角恒等式,型函数的值域,属于中档题.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.19、(1)见证明;(2)3【解析】

(1)本题首先可以通过菱形的相关性质证明出AE⊥AD,然后通过PA⊥菱形ABCD所在的平面证明出PA⊥AE,最后通过线面垂直的相关性质即可得出结果;(2)可以将三角形APM当成三棱锥P-ACM的底面,将AE当成三棱锥P-ACM的高,最后通过三棱锥的体积计算公式即可得出结果.【详解】(1)证明:连接AC,因为底面ABCD为菱形,∠ABC=60°,所以因为E是BC的中点,所以AE⊥BC,因为AD//BC,所以AE⊥AD,因为PA⊥平面ABCD,AE⊆平面ABCD,所以PA⊥AE,又因为PA∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,则AD=2,AE=3所以Vp【点睛】本题考查立体几何的相关性质,主要考查线面垂直的证明以及三棱锥体积的求法,可以通过证明平面外一条直线垂直平面内的两条相交直线来证明线面垂直,考查推理能力,是中档题.20、(1)(2)【解析】

(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论