2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题含解析_第1页
2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题含解析_第2页
2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题含解析_第3页
2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题含解析_第4页
2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省重点中学协作体高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以为圆心,且与两条直线,都相切的圆的标准方程为()A. B.C. D.2.已知直线与平行,则等于()A.或 B.或 C. D.3.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.4.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.5.把函数,图象上所有的点向右平行移动个单位长度,横坐标伸长到原来的2倍,所得图象对应的函数为()A. B.C. D.6.若存在正实数,使得,则()A.实数的最大值为 B.实数的最小值为C.实数的最大值为 D.实数的最小值为7.在空间四边形中,分别是的中点.若,且与所成的角为,则四边形的面积为()A. B. C. D.8.如果a<b<0,那么下列不等式成立的是()A. B. C. D.9.已知向量,,则向量的夹角的余弦值为()A. B. C. D.10.将八进制数化成十进制数,其结果为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设满足约束条件,则的最小值为__________.12.若数列满足,则_____.13.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.14.______.15.两个实习生加工一个零件,产品为一等品的概率分别为和,则这两个零件中恰有一个一等品的概率为__________.16.若复数(为虚数单位),则的共轭复数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).18.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).19.已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.20.若不等式的解集是.(1)求的值;(2)当为何值时,的解集为.21.设等差数列的前项和为,且.(I)求数列的通项公式;(II)设为数列的前项和,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意有,再求解即可.【详解】解:设圆的半径为,则,则,即圆的标准方程为,故选:C.【点睛】本题考查了点到直线的距离公式,重点考查了运算能力,属基础题.2、C【解析】

由题意可知且,解得.故选.3、D【解析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.4、C【解析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.5、C【解析】

利用二倍角的余弦公式以及辅助角公式将函数化为的形式,然后再利用三角函数的图像变换即可求解.【详解】函数,函数图象上所有的点向右平行移动个单位长度可得,在将横坐标伸长到原来的2倍,可得.故选:C【点睛】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的图像平移伸缩变换,需熟记公式,属于基础题.6、C【解析】

将题目所给方程转化为关于的一元二次方程,根据此方程在上有解列不等式组,解不等式组求得的取值范围,进而求出正确选项.【详解】由得,当时,方程为不和题意,故这是关于的一元二次方程,依题意可知,该方程在上有解,注意到,所以由解得,故实数的最大值为,所以选C.【点睛】本小题主要考查一元二次方程根的分布问题,考查化归与转化的数学思想方法,属于中档题.7、A【解析】

连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD.同理,FG∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD=a,AC与BD所成的角为60°所以EF=EH.所以四边形EFGH为菱形,∠EFG=60°.∴四边形EFGH的面积是2××()2=a2故答案为a2,故选A.考点:本题主要是考查的知识点简单几何体和公理四,公理四:和同一条直线平行的直线平行,证明菱形常用方法是先证明它是平行四边形再证明邻边相等,以及面积公式属于基础题.点评:解决该试题的关键是先证明四边形EFGH为菱形,然后说明∠EFG=60°,最后根据三角形的面积公式即可求出所求.8、D【解析】对于选项A,因为,所以,所以即,所以选项A错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,故选项C错误;对于选项D,,所以,又,所以,所以,选D.9、C【解析】

先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.10、B【解析】

利用进制数化为十进制数的计算公式,,从而得解.【详解】由题意,,故选.【点睛】本题主要考查八进制数与十进制数之间的转化,熟练掌握进制数与十进制数之间的转化计算公式是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.12、【解析】

由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.13、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.14、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.15、【解析】

利用相互独立事件概率乘法公式直接求解.【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为和,这两个零件中恰有一个一等品的概率为:.故答案为:.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.16、【解析】

利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】由z=i(2﹣i)=1+2i,得.故答案为1﹣2i.【点睛】本题考查复数代数形式的乘除运算,考查共轭复数的基本概念,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)甲乙,甲乙,甲=,甲=【解析】

(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第三组,甲;(2)根据两个频率分布直方图可得:甲乙,甲乙甲=甲=【点睛】此题考查频率分布直方图,根据两组直方图特征判断中位数和方差的大小关系,求中位数,平均数和方差,关键在于熟练掌握相关数据的求法,准确计算得解.18、(1)见解析;(2)见解析【解析】

(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19、(1)(2)【解析】

(1)先设等差数列的公差为,根据题中条件求出公差,即可得出通项公式;(2)根据前项和公式,即可求出结果.【详解】(1)依题意,设等差数列的公差为,因为,所以,又,所以公差,所以.(2)由(1)知,,所以【点睛】本题主要考查等差数列,熟记等差数列的通项公式与前项和公式即可,属于基础题型.20、(1);(2)【解析】

(1)由不等式的解集是,利用根与系数关系列式求出的值;(2)代入得值后,由不等式对应的方程的判别式小于等于0,列式求解的取值范围.【详解】(1)由题意知,1﹣<0,且﹣1和1是方程的两根,∴,解得=1.(2),即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论