2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽池州市青阳县第一中学高一数学第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12A.缩小为原来的34 B.缩小为原来的C.扩大为原来的2倍 D.不变2.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-103.直线的倾斜角是()A.30° B.60° C.120° D.135°4.若不等式的解集是,则的值为()A.12 B. C. D.105.在中,角的对边分别为.若,,,则边的大小为()A.3 B.2 C. D.6.从甲、乙、丙、丁四人中随机选出人参加志愿活动,则甲被选中的概率为()A. B. C. D.7.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12008.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④9.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.2010.已知集合,集合,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,若,则的所有可能值的和为______;12.在中,,,面积为,则________.13.记为数列的前项和.若,则_______.14.函数f(x)=sin22x的最小正周期是__________.15.若点在幂函数的图像上,则函数的反函数=________.16.在中,,过直角顶点作射线交线段于点,则的概率为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.18.已知数列的前项和为,且,求数列的通项公式.19.已知函数,其中常数;(1)令,判定函数的奇偶性,并说明理由;(2)令,将函数图像向右平移个单位,再向上平移1个单位,得到函数的图像,对任意,求在区间上零点个数的所有可能值;20.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程.21.锐角的内角、、所对的边分别为、、,若.(1)求;(2)若,,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

设原来的圆锥底面半径为r,高为h,可得出变化后的圆锥的底面半径为12r,高为【详解】设原来的圆锥底面半径为r,高为h,该圆锥的体积为V=1变化后的圆锥底面半径为12r,高为该圆锥的体积为V'=1故选:A.【点睛】本题考查圆锥体积的计算,考查变化后的圆锥体积的变化,解题关键就是圆锥体积公式的应用,考查计算能力,属于中等题.2、A【解析】

等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.3、C【解析】

根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.4、B【解析】

将不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数,从而求出所求.【详解】解:不等式的解集为,为方程的两个根,根据韦达定理:解得,故选:B。【点睛】本题主要考查了一元二次不等式的应用,以及韦达定理的运用和一元二次不等式解集与所对应一元二次方程根的关系,属于中档题.5、A【解析】

直接利用余弦定理可得所求.【详解】因为,所以,解得或(舍).故选A.【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了一元二次方程的解法,属于基础题.6、C【解析】分析:用列举法得出甲、乙、丙、丁四人中随机选出人参加志愿活动的事件数,从而可求甲被选中的概率.详解:从甲、乙、丙、丁四人中随机选出人参加志愿活动,包括:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁6种情况,甲被选中的概率为.故选C.点睛:本题考查用列举法求基本事件的概率,解题的关键是确定基本事件,属于基础题.7、B【解析】

根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【点睛】本题考查分层抽样的方法,属于容易题.8、D【解析】

根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。9、B【解析】

根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10、D【解析】

先化简集合,再利用交集运算法则求.【详解】,,,故选:D.【点睛】本题考查集合的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、36【解析】

根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.12、【解析】

由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.13、【解析】

由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.14、.【解析】

将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.【详解】函数,周期为【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.15、【解析】

根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

设,求出的长,由几何概型概率公式计算.【详解】设,由题意得,,∴的概率是.故答案为:.【点睛】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】

(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在的概率,即可求得答案.【详解】(1)由直方图可得:(2)根据中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标.直方图可得:可得:辆纯电动汽车续驶里程的中位数.(3)续驶里程在的车辆数为:续驶里程在第五组的车辆数为.从辆车中随机抽取辆车,共有中抽法,其中恰有一辆车的续驶里程在的抽法有种,其中恰有一辆车的续驶里程在的概率为.【点睛】本题考查根据条型统计图求数据的中位数和根据组合数求概率问题,解题关键是掌握条型统计图基础知识和概率的求法,考查了分析能力和计算能力,属于中档题.18、【解析】

当时,,当时,,即可得出.【详解】∵已知数列的前项和为,且,当时,,当时,,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题.19、(1)非奇非偶,理由见解析;(2)21或20个.【解析】

(1)先利用辅助角公式化简,再利用和可判断为非奇非偶函数.(2)求出的解析式后结合函数的图像、周期及给定区间的特点可判断在给定的范围上的零点的个数.【详解】(1),则,故不是奇函数,又,,故不是偶函数.综上,为非奇非偶函数.(2),的图象如图所示:令,则,则或,,也就是或者,,所以在形如的区间上恰有两个不同零点.把区间分成10个小区间,它们分别为:,及,根据函数的图像可知:前9个区间的长度恰为一个周期且左闭右开,故每个区间恰有两个不同的零点,最后一个区间的长度恰为一个周期且为闭区间,故该区间上可能有两个不同的零点或3个不同的零点.故在区间上可有21个或者20个零点.【点睛】本题考查正弦型函数的奇偶性、正弦型函数在给定范围上的零点个数,注意说明一个函数不是奇函数或不是偶函数,可通过反例来说明,而零点个数的判断则需综合考虑给定区间的长度、开闭情况及函数的周期.20、(1);(2).【解析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程.解:(1)设点C(x,y),∵边AC的中点M在y轴上得=1,∵边BC的中点N在x轴上得=1,解得x=﹣5,y=﹣2.故所求点C的坐标是(﹣5,﹣2).(2)点M的坐标是(1,﹣),点N的坐标是(1,1),直线MN的方程是=,即5x﹣2y﹣5=1.点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论